Citation: | GAO Guofu, LI Kang, LI Yu, et al. Formation mechanism of Faraday wave on thin liquid film excited by ultrasonic vibration[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(8): 1582-1588. doi: 10.13700/j.bh.1001-5965.2018.0710(in Chinese) |
Aimed at the Faraday wave formed by 35 kHz ultrasonic excitation on thin liquid film, the formation mechanism of Faraday wave was explored by experiments and finite element simulation. The two-phase flow calculation model under ultrasonic excitation was established. The finite element simulation of the formation process of Faraday wave was carried out by CFD method. The formation mechanism of Faraday wave was discussed by analyzing the phase diagram and streamline diagram. The vibration frequency of Faraday wave was about 1/2 of the drive frequency. The existence of liquid inertia resulted in a constantly varying phase difference between the ultrasonic excitation and the liquid surface wave, and the phase difference variation period was about two ultrasonic excitation periods. Through the 35 kHz ultrasonic excitation experiment on thin liquid film, a well-arranged Faraday wave array pattern was observed on the surface of the thin liquid film. By measuring the wavelength of the Faraday wave, it was deduced that the surface wave frequency obtained by the experiment was about 1/2 of the ultrasonic frequency, and consistent with the results of finite element simulation.
[1] |
雷成龙.利用液-固界面效应制备球形金属粉末及其性能研究[D].南京: 南京大学, 2016: 14-25.
LEI C L.Preparation of spherical metal powder by liquid-solid interface effect and its properties[D]. Nanjing: Nanjing University, 2016: 14-25(in Chinese).
|
[2] |
乐国敏, 李强, 董鲜峰.适用于金属增材制造的球形粉体制备技术[J].稀有金属材料与工程, 2017, 46(4):1162-1168.
LE G M, LI Q, DONG X F.Preparation of spherical powders for metal additive manufacturing[J]. Rare Metal Materials and Engineering, 2017, 46(4):1162-1168(in Chinese).
|
[3] |
高正江, 周香林, 李景昊, 等.高性能球形金属粉末制备技术进展[J].热喷涂技术, 2018, 10(3):1-9. doi: 10.3969/j.issn.1674-7127.2018.03.001
GAO Z J, ZHOU X L, LI J H, et al.Advances in preparation technology of high performance spherical metal powders[J]. Thermal Spraying Technology, 2018, 10(3):1-9(in Chinese). doi: 10.3969/j.issn.1674-7127.2018.03.001
|
[4] |
张海庆.均匀颗粒成型法(UDS)原理及应用[J].天津冶金, 2001(1):39-40. doi: 10.3969/j.issn.1006-110X.2001.01.011
ZHANG H Q.Principle and application of uniform particle forming method (UDS)[J]. Tianjin Metallurgy, 2001(1):39-40(in Chinese). doi: 10.3969/j.issn.1006-110X.2001.01.011
|
[5] |
SONG W, SHUMLAK U.Ultrasonically aided electrospray source for charged particles approaching monodisperse distributions[J]. Journal of Propulsion & Power, 2012, 26(2):353-363.
|
[6] |
FARADAY M.On the forms and states of fluids on vibrating elastic surfaces[J]. Proceedings of the Royal Society of London, 1831, 121:299-340.
|
[7] |
BENJAMIN T B, URSELL F.The stability of the plane free surface of a liquid in vertical periodic motion[J]. Proceedings of the Royal Society of London, 1954, 225(1163):505-515. doi: 10.1098/rspa.1954.0218
|
[8] |
EISENMENGER W.Dynamic properties of surface tension of water and aqueous solutions of surface active agents with standing capillary waves in the frequency range from 10kHz to 1.5 MHz[J]. Acoustica, 1959, 9:327-340.
|
[9] |
PESKIN R L, RACO R J.Ultrasonic atomization of liquids[J]. The Journal Acoustical Society of America, 1963, 34(1):6-15. doi: 10.1121-1.1918700/
|
[10] |
SINDAYIHEBURA D, BOLLE L.Theoretical and experimental study of the behavior of liquid film free surfaces driven by transverse ultrasonic vibrations[J]. WIT Transactions on Modelling and Simulation:Computational Modelling of Free and Moving Boundary Problems, 1995, 13:67-74.
|
[11] |
SINDAYIHEBURA D, BOLLE L, CORNET A, et al.Theoretical and experimental study of transducers aimed at low-frequency ultrasonic atomization of liquids[J]. The Journal of the Acoustical Society of America, 1998, 103(3):1442-1448. doi: 10.1121/1.421300
|
[12] |
菅永军, 鄂学全, 柏威.参数激励圆柱形容器中的非线性Faraday波[J].应用数学和力学, 2003, 24(10):1057-1068. doi: 10.3321/j.issn:1000-0887.2003.10.009
JIAN Y J, E X Q, BAI W.Nonlinear Faraday waves in parameter-excited cylindrical vessels[J]. Applied Mathematics and Mechanics, 2003, 24(10):1057-1068(in Chinese). doi: 10.3321/j.issn:1000-0887.2003.10.009
|
[13] |
JIAN Y J, E X Q.Instability analysis of nonlinear surface waves in a circular cylindrical container subjected to a vertical excitation[J]. European Journal of Mechanics B-Fluids, 2005, 24(6):683-702. doi: 10.1016/j.euromechflu.2005.03.002
|
[14] |
长龙, 菅永军, 刘全生.圆柱形容器中垂直激励的弱黏性流体界面波[J].内蒙古大学学报(自然版), 2014, 45(4):353-359.
CHANG L, JIAN Y J, LIU Q S.The interface of weakly viscous fluids with vertical excitation in cylindrical vessels[J]. Journal of Inner Mongolia University (Natural Science Edition), 2014, 45(4):353-359(in Chinese).
|
[15] |
HIGGINBOTHAM A P, GUILLEN A, JONES N, et al.Evidence of the harmonic Faraday instability in ultrasonic atomization experiments with a deep, inviscid fluid[J]. The Journal of the Acoustical Society of America, 2011, 130(5):2694. doi: 10.1121/1.3643816
|
[16] |
LI Y, UMEMURA A.Two-dimensional numerical investigation on the dynamics of ligament formation by Faraday instability[J]. International Journal of Multiphase Flow, 2014, 60:64-75. doi: 10.1016/j.ijmultiphaseflow.2013.12.002
|
[17] |
刘财兴, 杜会静, 王怀翔.垂直激励低黏度硅油的法拉第波研究[J].大学物理, 2016, 35(4):52-59. http://www.cnki.com.cn/Article/CJFDTOTAL-DXWL201604013.htm
LIU C X, DU H J, WANG H X.Faraday wave study of vertically excited low viscosity silicone oil[J]. University Physics, 2016, 35(4):52-59(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-DXWL201604013.htm
|
[18] |
SHELDRAKE M, SHELDRAKE R.Determinants of Faraday wave-patterns in water samples oscillated vertically at a range of frequencies from 50-200 Hz[J]. Water, 2017, 9:1-27.
|
[19] |
赵文定, 王思慧, 范周游, 等.理想流体的法拉第波模态[J].物理实验, 2017, 37(1):13-18. doi: 10.3969/j.issn.1005-4642.2017.01.003
ZHAO W D, WANG S H, FAN Z Y, et al.Faraday wave modes of ideal fluids[J]. Physics Experiment, 2017, 37(1):13-18(in Chinese). doi: 10.3969/j.issn.1005-4642.2017.01.003
|
[20] |
TADRIST L, SHIM J B, GILET T, et al.Faraday instability and subthreshold Faraday waves:Surface waves emitted by walkers[J]. Journal of Fluid Mechanics, 2018, 848:906-945. doi: 10.1017/jfm.2018.358
|
[21] |
DUMOUCHEL C, SINDAYIHEBURA D, BOLLE L.Application of the maximum entropy formalism on sprays produced by ultrasonic atomizers[J]. Particle & Particle Systems Characterization, 2003, 20(2):150-161. doi: 10.1002-ppsc.200390012/
|
[22] |
RAYLEIGH J W S B, LINDSAY R B.The theory of sound[M]. New York:Dover Publications, 1945:344.
|
[23] |
EHRHORN J, SEMKE W.Numerical modeling of vibration induced atomization of liquids[J]. Folia Parasitologica, 2013, 45(3):196-198.
|
[24] |
YULE A J, AL-SULEIMANI Y.A CFD prediction of wave development and droplet production on surface under ultrasonic excitation[C]//Preceding of Institute for Liquid Atomization and Spray Systems-Europe, 2002.
|
[25] |
HONG Y, JIE H, GU X Z, et al.Study on ultrasonic spray technology for the coating of vascular stent[J]. Science China Technological Sciences, 2011, 54(12):3358-3370. doi: 10.1007/s11431-011-4580-0
|
[26] |
蔡耀中.超声微泡发生方法及装置设计研究[D].杭州: 杭州电子科技大学, 2014: 46.
CAI Y Z.The design and study of ultrasonic micro bubbles generator and technique[D]. Hangzhou: Hangzhou Dianzi University, 2014: 46(in Chinese).
|
[1] | LI Longhui, YU Kaikai, XU Jinglei. Study on the Effect of Shock Strength Distribution on the Global Stability of Shock Wave/Boundary Layer Interaction[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0847 |
[2] | TONG G Y,WAN Y N,ZHANG L,et al. Mechanism analysis and process optimization of transverse cracking of hydraulic crushing hammer piston[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(10):2995-3004 (in Chinese). doi: 10.13700/j.bh.1001-5965.2024.0130. |
[3] | CHEN B,LIU Y,YIN K L,et al. Runway temperature data mechanism joint prediction based on LSTM under ice and snow[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(7):2184-2194 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0579. |
[4] | WANG Weijie, GUO Dinghun, LI Xiangyu, GENG Yixuan, QUAN Long. Typical Fault Mechanism Modeling and Simulation of Insulin Pump Sets[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0394 |
[5] | TANG Y X,LIU Y M,AN Y F,et al. Flow mechanism of horseshoe vortex suction control for compressor cascade[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(4):1282-1291 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0461. |
[6] | YUAN Run-jie, CHEN Rui, HAN Jian-wei, XIA Qing, WANG Xuan, CHEN Qian, LIANG Ya-nan. Mechanism of anomalies in operational amplifier induced by proton deep charge-discharge effects[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0060 |
[7] | LI Z X,MA M Y,WU J H,et al. Model correction method for CFD numerical simulation under mixed aleatory and epistemic uncertainty[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(7):2343-2353 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0624. |
[8] | CHEN C,GE J H,XU J L,et al. Influence of inlet corner wave system on performance of scramjet nozzle[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(10):3250-3261 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0768. |
[9] | PAN C Z,HE G,LI Z J,et al. Adaptive filtered control for uncertain electro-hydraulic servo systems with time-varying output constraints[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(6):1819-1828 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0497. |
[10] | GUO Wenjuan, LI Qiang, ZHOU Ling. A CFD grid uncertainty analysis method for hypersonic aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0099 |
[11] | Yunfan WANG, Jie JIN, Genhong LAI, Fang WANG. Study on the influence of chemical reaction mechanism on turbulent jet flame[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0093 |
[12] | XIONG Liang, ZHANG Rui, XU Bin, HUANG Qiao-ping. Research on Evolution Mechanism of Configuration and Parameter Solution Model of Air Data Sensing System for Aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0339 |
[13] | YAN X Y,ZHOU S D,LU Y,et al. Degradation mechanism and influencing factors on lithium-ion batteries[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(6):1402-1413 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0458. |
[14] | GUO S N,SONG W,XIANG N L,et al. Dynamic characteristics of turbine flowmeter based on CFD simulation[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(8):1904-1911 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0594. |
[15] | ZHANG P H,CHENG X H,CHEN H Y,et al. Unsteady flow mechanism of high Mach number cavity[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(8):1940-1947 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0609. |
[16] | ZHAO T M,HOU J X,LIU Y W. Influence mechanism of continuous curvature shaping method on buzz-saw noise[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(4):922-931 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0342. |
[17] | SUN Lihua, YAN Xiaopeng, LIU Qiang, HAO Xinhong, ZHANG Hongyun. PM based super-resolution method of azimuth detection for electromagnetic vortex wave fuze[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(7): 1263-1268. doi: 10.13700/j.bh.1001-5965.2021.0020 |
[18] | JIANG Yu, YANG Chao, WU Zhigang. Mechanism analysis of a new aeroservoelastic instability mode[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(7): 1314-1323. doi: 10.13700/j.bh.1001-5965.2021.0571 |
[19] | GONG Xiaoquan, WU Xiaojun, TANG Jing, LI Ming, ZHANG Jian. Application of r-grid adaptive for shock capturing in discontinuous Galerkin finite element method[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(10): 1889-1898. doi: 10.13700/j.bh.1001-5965.2021.0046 |
[20] | LI Yongchang, DAI Yuting, YANG Chao. Fluid and structure coupling analysis of split drag rudder[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(12): 2494-2501. doi: 10.13700/j.bh.1001-5965.2021.0151 |