Citation: | YANG Shichun, ZHOU Sida, ZHANG Yulong, et al. Review on refrigerant for direct-cooling thermal management system of lithium-ion battery for electric vehicles[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(11): 2123-2132. doi: 10.13700/j.bh.1001-5965.2019.0115(in Chinese) |
The direct-cooling thermal management system is one of the feasible solutions for the future advanced thermal management system of electric vehicles, which has great potential in terms of vehicle weight reduction and temperature consistency management. Refrigerants are the critical components for direct-cooling thermal management system that directly impact the refrigeration capacity, efficiency and safety. Selecting an effective and suitable refrigerant is especially important for direct-cooling thermal management systems. In this paper, the refrigerants for the direct-cooling thermal management system in recent years is reviewed. First, the thermal management requirements of the lithium-ion batteries and the performance of the direct-cooling thermal management systems are introduced based on electric vehicle applications. Then the definitions and characteristics of commonly used refrigerants are systematically analyzed. The next part introduces the research progress of the pure refrigerants and mixed refrigerants in detail. Finally, the problems and future prospects of the refrigerants are summarized, and feasible research directions for refrigerants in thefuture direct-cooling thermal management systems are proposed.
[1] |
XU J, LAN C, QIAO Y, et al.Prevent thermal runaway of lithium-ion batteries with minichannel cooling[J].Applied Thermal Engineering, 2017, 110:883-890. doi: 10.1016/j.applthermaleng.2016.08.151
|
[2] |
WU W X, WANG S, WU W, et al.A critical review of battery thermal performance and liquid based battery thermal management[J].Energy Conversion and Management, 2019, 182:262-281. doi: 10.1016/j.enconman.2018.12.051
|
[3] |
KIM J, OH J, LEE H.Review on battery thermal management system for electric vehicles[J].Applied Thermal Engineering, 2019, 149:192-212. doi: 10.1016/j.applthermaleng.2018.12.020
|
[4] |
GOU J, LIU W.Feasibility study on a novel 3D vapor chamber used for Li-ion battery thermal management system of electric vehicle[J].Applied Thermal Engineering, 2019, 152:362-369. doi: 10.1016/j.applthermaleng.2019.02.034
|
[5] |
IANNICIELLO L, BIWOLÉ P H, ACHARD P.Electric vehicles batteries thermal management systems employing phase change materials[J].Journal of Power Sources, 2018, 378:383-403. doi: 10.1016/j.jpowsour.2017.12.071
|
[6] |
ZHANG X, LIU C, RAO Z.Experimental investigation on thermal management performance of electric vehicle power battery using composite phase change material[J].Journal of Cleaner Production, 2018, 201:916-924. doi: 10.1016/j.jclepro.2018.08.076
|
[7] |
SMITH J, SINGH R, HINTERBERGER M, et al.Battery thermal management system for electric vehicle using heat pipes[J].International Journal of Thermal Sciences, 2018, 134:517-529. doi: 10.1016/j.ijthermalsci.2018.08.022
|
[8] |
CEN J, LI Z, JIANG F.Experimental investigation on using the electric vehicle air conditioning system for lithium-ion battery thermal management[J].Energy for Sustainable Development, 2018, 45:88-95. doi: 10.1016/j.esd.2018.05.005
|
[9] |
ZHANG G, QIN F, ZOU H, et al.Experimental study on a dual-parallel-evaporator heat pump system for thermal management of electric vehicles[C]//8th International Conference on Applied Energy (ICAE).Amsterdam: Elsevier, 2017, 105: 2390-2395.
|
[10] |
AL-ZAREER M, DINCER I, ROSEN M A.Novel thermal management system using boiling cooling for high-powered lithium-ion battery packs for hybrid electric vehicles[J].Journal of Power Sources, 2017, 363:291-303. doi: 10.1016/j.jpowsour.2017.07.067
|
[11] |
DENG Y, FENG C, E J, et al.Effects of different coolants and cooling strategies on the cooling performance of the power lithium ion battery system:A review[J].Applied Thermal Engineering, 2018, 142:10-29. doi: 10.1016/j.applthermaleng.2018.06.043
|
[12] |
HUANG Q, LI X, ZHANG G, et al.Experimental investigation of the thermal performance of heat pipe assisted phase change material for battery thermal management system[J].Applied Thermal Engineering, 2018, 141:1092-1100. doi: 10.1016/j.applthermaleng.2018.06.048
|
[13] |
ZHAO C, SOUSA A C M, JIANG F.Minimization of thermal non-uniformity in lithium-ion battery pack cooled by channeled liquid flow[J].International Journal of Heat and Mass Transfer, 2019, 129:660-670. doi: 10.1016/j.ijheatmasstransfer.2018.10.017
|
[14] |
SONG W, CHEN M, CHEN Y, et al.Non-uniform effect on the thermal/aging performance of lithium-ion pouch battery[J].Applied Thermal Engineering, 2018, 128:1165-1174. doi: 10.1016/j.applthermaleng.2017.09.090
|
[15] |
LIU H, WEI Z, HE W, et al.Thermal issues about Li-ion batteries and recent progress in battery thermal management systems:A review[J].Energy Conversion and Management, 2017, 150:304-330. doi: 10.1016/j.enconman.2017.08.016
|
[16] |
AL-ZAREER M, DINCER I, ROSEN M A.Heat and mass transfer modeling and assessment of a new battery cooling system[J].International Journal of Heat and Mass Transfer, 2018, 126:765-778. doi: 10.1016/j.ijheatmasstransfer.2018.04.157
|
[17] |
SAAB R, AL QUABEH H, ALI HM I.Variable refrigerant flow cooling assessment in humid environment using different refrigerants[J].Journal of Environmental Management, 2018, 224:243-251. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b7bad64424a2cac291a2c377c61bd06d
|
[18] |
MESSA G V, FERRARESE G, MALAVASI S.A mixed Euler-Euler/Euler-Lagrange approach to erosion prediction[J].Wear, 2015, 342-343:138-153. doi: 10.1016/j.wear.2015.08.015
|
[19] |
DAPELO D, BRIDGEMAN J.Euler-Lagrange computational fluid dynamics simulation of a full-scale unconfined anaerobic digester for wastewater sludge treatment[J].Advances in Engineering Software, 2018, 117:153-169. doi: 10.1016/j.advengsoft.2017.08.009
|
[20] |
ISSAKHOV A, ZHANDAULET Y, NOGAEVA A.Numerical simulation of dam break flow for various forms of the obstacle by VOF method[J].International Journal of Multiphase Flow, 2018, 109:191-206. doi: 10.1016/j.ijmultiphaseflow.2018.08.003
|
[21] |
YIN X, ZARIKOS I, KARADIMITRIOU N K, et al.Direct simulations of two-phase flow experiments of different geometry complexities using volume-of-fluid (VOF) method[J].Chemical Engineering Science, 2019, 195:820-827. doi: 10.1016/j.ces.2018.10.029
|
[22] |
BILGER C, ABOUKHEDR M, VOGIATZAKI K, et al.Evaluation of two-phase flow solvers using level set and volume of fluid methods[J].Journal of Computational Physics, 2017, 345:665-686. doi: 10.1016/j.jcp.2017.05.044
|
[23] |
GU Z H, WEN H L, YU C H, et al.Interface-preserving level set method for simulating dam-break flows[J].Journal of Computational Physics, 2018, 374:249-280. doi: 10.1016/j.jcp.2018.07.057
|
[24] |
SCHRAGE R W.A theoretical study of interface mass transfer[D].New York: Columbia University, 1953.
|
[25] |
CHIEN N B, CHOI K, OH J, et al.An experimental investigation of flow boiling heat transfer coefficient and pressure drop of R410A in various minichannel multiport tubes[J].International Journal of Heat and Mass Transfer, 2018, 127:675-686. doi: 10.1016/j.ijheatmasstransfer.2018.06.145
|
[26] |
DONG C, HIBIKI T.Heat transfer correlation for two-component two-phase slug flow in horizontal pipes[J].Applied Thermal Engineering, 2018, 141:866-876. doi: 10.1016/j.applthermaleng.2018.06.029
|
[27] |
DONG C, HIBIKI T.Correlation of heat transfer coefficient for two-component two-phase slug flow in a vertical pipe[J].International Journal of Multiphase Flow, 2018, 108:124-139. doi: 10.1016/j.ijmultiphaseflow.2018.07.003
|
[28] |
IN S, BAEK S, JIN L, et al.Flow boiling heat transfer of R123/R134a mixture in a microchannel[J].Experimental Thermal and Fluid Science, 2018, 99:474-486. doi: 10.1016/j.expthermflusci.2018.08.013
|
[29] |
AL-ZAREER M, DINCER I, ROSEN M A.Development and evaluation of a new ammonia boiling based battery thermal management system[J].Electrochimica Acta, 2018, 280:340-352. doi: 10.1016/j.electacta.2018.05.093
|
[30] |
SAW L H, POON H M, THIAM H S, et al.Novel thermal management system using mist cooling for lithium-ion battery packs[J].Applied Energy, 2018, 223:146-158. doi: 10.1016/j.apenergy.2018.04.042
|
[31] |
DOUBEK M, HAUBNER M, VACEK V, et al.Measurement of heat transfer coefficient in two phase flows of radiation-resistant zeotropic C2F6/C3F8 blends[J].International Journal of Heat and Mass Transfer, 2017, 113:246-256. doi: 10.1016/j.ijheatmasstransfer.2017.05.049
|
[32] |
ZHANG J, KAERN M R, OMMEN T, et al.Condensation heat transfer and pressure drop characteristics of R134a, R1234ze(E), R245fa and R1233zd(E) in a plate heat exchanger[J].International Journal of Heat and Mass Transfer, 2019, 128:136-149. doi: 10.1016/j.ijheatmasstransfer.2018.08.124
|
[33] |
YANG C, NALBANDIAN H, LIN F.Flow boiling heat transfer and pressure drop of refrigerants HFO-1234yf and HFC-134a in small circular tube[J].International Journal of Heat and Mass Transfer, 2018, 121:726-735. doi: 10.1016/j.ijheatmasstransfer.2017.12.161
|
[34] |
KASAEIAN A, HOSSEINI S M, SHEIKHPOUR M, et al.Applications of eco-friendly refrigerants and nanorefrigerants:A review[J].Renewable and Sustainable Energy Reviews, 2018, 96:91-99. doi: 10.1016/j.rser.2018.07.033
|
[35] |
ABAS N, KALAIR A R, KHAN N, et al.Natural and synthetic refrigerants, global warming:A review[J].Renewable and Sustainable Energy Reviews, 2018, 90:557-569. doi: 10.1016/j.rser.2018.03.099
|
[36] |
YAPICIOGLU A, DINCER I.A review on clean ammonia as a potential fuel for power generators[J].Renewable and Sustainable Energy Reviews, 2019, 103:96-108. doi: 10.1016/j.rser.2018.12.023
|
[37] |
JIANG P, ZHAO C, LIU B.Flow and heat transfer characteristics of r22 and ethanol at supercritical pressures[J].The Journal of Supercritical Fluids, 2012, 70:75-89. doi: 10.1016/j.supflu.2012.06.011
|
[38] |
WANG D, TIAN R, ZHANG Y, et al.Experimental comparison of the heat transfer of supercritical R134a in a micro-fin tube and a smooth tube[J].International Journal of Heat and Mass Transfer, 2019, 129:1194-1205. doi: 10.1016/j.ijheatmasstransfer.2018.10.052
|
[39] |
AMMAR S M, ABBAS N, ABBAS S, et al.Experimental investigation of condensation pressure drop of R134a in smooth and grooved multiport flat tubes of automotive heat exchanger[J].International Journal of Heat and Mass Transfer, 2019, 130:1087-1095. doi: 10.1016/j.ijheatmasstransfer.2018.11.018
|
[40] |
WEN J, GU X, WANG S, et al.The comparison of condensation heat transfer and frictional pressure drop of R1234ze(E), propane and R134a in a horizontal mini-channel[J].International Journal of Refrigeration, 2018, 92:208-224. doi: 10.1016/j.ijrefrig.2018.03.006
|
[41] |
DANG Y, KAMIAKA T, DANG C, et al.Liquid viscosity of low-GWP refrigerant mixtures (R32+R1234yf) and (R125+R1234yf)[J].The Journal of Chemical Thermodynamics, 2015, 89:183-188. doi: 10.1016/j.jct.2015.05.009
|
[42] |
AL GHAFRI S Z, ROWLAND D, AKHFASH M, et al.Thermodynamic properties of hydrofluoroolefin (R1234yf and R1234ze(E)) refrigerant mixtures:Density, vapour-liquid equilibrium, and heat capacity data and modelling[J].International Journal of Refrigeration, 2019, 98:249-260. doi: 10.1016/j.ijrefrig.2018.10.027
|
[43] |
CHOUDHARI C S, SAPALI S N.Performance investigation of natural refrigerant R290 as a substitute to R22 in refrigeration systems[C]//International Conference on Recent Advancement in Air Conditioning and Refrigeration (RAAR).Amsterdam: Elsevier, 2017, 109: 346-352. http://www.sciencedirect.com/science/article/pii/S1876610217301066
|
[44] |
BAE S J, KWON J, KIM S G, et al.Condensation heat transfer and multi-phase pressure drop of CO2 near the critical point in a printed circuit heat exchanger[J].International Journal of Heat and Mass Transfer, 2019, 129:1206-1221. doi: 10.1016/j.ijheatmasstransfer.2018.10.055
|
[45] |
GAO Y, SHAO S, ZHAN B, et al.Heat transfer and pressure drop characteristics of ammonia during flow boiling inside a horizontal small diameter tube[J].International Journal of Heat and Mass Transfer, 2018, 127:981-996. doi: 10.1016/j.ijheatmasstransfer.2018.07.137
|
[46] |
JIANG L, WANG R Z, LI J B, et al.Performance analysis on a novel sorption air conditioner for electric vehicles[J].Energy Conversion and Management, 2018, 156:515-524. doi: 10.1016/j.enconman.2017.11.077
|
[47] |
LONGO G A, ZILIO C, RIGHETTI G.Condensation of the low GWP refrigerant HFC152a inside a brazed plate heat exchanger[J].Experimental Thermal and Fluid Science, 2015, 68:509-515. doi: 10.1016/j.expthermflusci.2015.06.010
|
[48] |
JIN Z, EIKEVIK T M, NEKSÅ P, et al.Annual energy performance of R744 and R410A heat pumping systems[J].Applied Thermal Engineering, 2017, 117:568-576. doi: 10.1016/j.applthermaleng.2017.02.072
|
[49] |
ZOU H, HUANG G, SHAO S, et al.Experimental study on heating performance of an R1234yf heat pump system for electric cars[C]//9th International Conference on Applied Energy (ICAE).Amsterdam: Elsevier, 2017, 142: 1015-1021.
|
[50] |
HIROSE M, ICHINOSE J, INOUE N.Development of the general correlation for condensation heat transfer and pressure drop inside horizontal 4 mm small-diameter smooth and microfin tubes[J].International Journal of Refrigeration, 2018, 90:238-248. doi: 10.1016/j.ijrefrig.2018.04.014
|
[51] |
LI H, HRNJAK P.Flow visualization of R32 in parallel-port microchannel tube[J].International Journal of Heat and Mass Transfer, 2019, 128:1-11. doi: 10.1016/j.ijheatmasstransfer.2018.08.120
|
[52] |
HE G, ZHOU S, LI D, et al.Experimental study on the flow boiling heat transfer characteristics of R32 in horizontal tubes[J].International Journal of Heat and Mass Transfer, 2018, 125:943-958. doi: 10.1016/j.ijheatmasstransfer.2018.04.116
|
[53] |
LONGO G A, MANCIN S, RIGHETTI G, et al.Saturated vapour condensation of R134a inside a 4 mm ID horizontal smooth tube:Comparison with the low GWP substitutes R152a, R1234yf and R1234ze(E)[J].International Journal of Heat and Mass Transfer, 2019, 133:461-473. doi: 10.1016/j.ijheatmasstransfer.2018.12.115
|
[54] |
ILLÁN-GÓMEZ F, GARCÍA-CASCALES J R.Experimental comparison of an air-to-water refrigeration system working with R134a and R1234yf[J].International Journal of Refrigeration, 2019, 97:124-131. doi: 10.1016/j.ijrefrig.2018.09.026
|
[55] |
LIU C, ZHANG Y, GAO T, et al.Performance evaluation of propane heat pump system for electric vehicle in cold climate[J].International Journal of Refrigeration, 2018, 95:51-60. doi: 10.1016/j.ijrefrig.2018.08.020
|
[56] |
WANG D, YU B, HU J, et al.Heating performance characteristics of CO2 heat pump system for electrical vehicle in a cold climate[J].International Journal of Refrigeration, 2018, 85:27-41. doi: 10.1016/j.ijrefrig.2017.09.009
|
[57] |
MOTA-BABILONI A, NAVARRO-ESBRÍ J, BARRAGÁN-CERVERA Á, et al.Analysis based on EU regulation No 517/2014 of new HFC/HFO mixtures as alternatives of high GWP refrigerants in refrigeration and HVAC systems[J].International Journal of Refrigeration, 2015, 52:21-31. doi: 10.1016/j.ijrefrig.2014.12.021
|
[58] |
ZHANG X.Heat transfer and enhancement analyses of flow boiling for R417A and R22[J].Experimental Thermal and Fluid Science, 2011, 35(7):1334-1342. doi: 10.1016/j.expthermflusci.2011.04.020
|
[59] |
HARBY K.Hydrocarbons and their mixtures as alternatives to environmental unfriendly halogenated refrigerants:An updated overview[J].Renewable and Sustainable Energy Reviews, 2017, 73:1247-1264. doi: 10.1016/j.rser.2017.02.039
|
[60] |
KASERA S, BHADURI S C.Performance of R407C as an alternate to R22: A review[C]//International Conference on Recent Advancement in Air Conditioning and Refrigeration(RAAR).Amsterdam: Elsevier, 2017, 109: 4-10. http://www.sciencedirect.com/science/article/pii/S1876610217300541
|
[61] |
ZHANG L, YANG C, LIU H, et al.Theoretical investigation on the properties of R744/R290 mixtures[C]//10th International Symposium on Heating, Ventilation and Air Conditioning(ISHVAC).Amsterdam: Elsevier, 2017, 205: 1620-1626.
|
[62] |
LI M, GUO Q, LV J, et al.Research on condensation heat transfer characteristics of R447A, R1234ze, R134a and R32 in multi-port micro-channel tubes[J].International Journal of Heat and Mass Transfer, 2018, 118:637-650. doi: 10.1016/j.ijheatmasstransfer.2017.10.101
|
[63] |
YU B, YANG J, WANG D, et al.Modeling and theoretical analysis of a CO2-propane autocascade heat pump for electrical vehicle heating[J].International Journal of Refrigeration, 2018, 95:146-155. doi: 10.1016/j.ijrefrig.2018.07.030
|
[64] |
JIN P, ZHAO C, JI W, et al.Experimental investigation of R410A and R32 falling film evaporation on horizontal enhanced tubes[J].Applied Thermal Engineering, 2018, 137:739-748. doi: 10.1016/j.applthermaleng.2018.03.060
|
[65] |
MYLONA S K, HUGHES T J, SAEED A A, et al.Thermal conductivity data for refrigerant mixtures containing R1234yf and R1234ze(E)[J].The Journal of Chemical Thermodynamics, 2019, 133:135-142. doi: 10.1016/j.jct.2019.01.028
|
[66] |
YANG M, ZHANG H, MENG Z, et al.Experimental study on R1234yf/R134a mixture(R513A) as R134a replacement in a domestic refrigerator[J].Applied Thermal Engineering, 2019, 146:540-547. doi: 10.1016/j.applthermaleng.2018.09.122
|