Du Zhenggang, Gao Yushan, Li Mao, et al. Numerical simulation of dual shear coaxial gas-gas injector[J]. Journal of Beijing University of Aeronautics and Astronautics, 2009, 35(6): 683-686. (in Chinese)
Citation: YANG Shichun, ZHOU Sida, ZHANG Yulong, et al. Review on refrigerant for direct-cooling thermal management system of lithium-ion battery for electric vehicles[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(11): 2123-2132. doi: 10.13700/j.bh.1001-5965.2019.0115(in Chinese)

Review on refrigerant for direct-cooling thermal management system of lithium-ion battery for electric vehicles

doi: 10.13700/j.bh.1001-5965.2019.0115
Funds:

National Key R & D Program of China 2016YFB0100300

More Information
  • Corresponding author: YANG Shichun.E-mail: yangshichun@buaa.deu.cn
  • Received Date: 19 Mar 2019
  • Accepted Date: 10 May 2019
  • Publish Date: 20 Nov 2019
  • The direct-cooling thermal management system is one of the feasible solutions for the future advanced thermal management system of electric vehicles, which has great potential in terms of vehicle weight reduction and temperature consistency management. Refrigerants are the critical components for direct-cooling thermal management system that directly impact the refrigeration capacity, efficiency and safety. Selecting an effective and suitable refrigerant is especially important for direct-cooling thermal management systems. In this paper, the refrigerants for the direct-cooling thermal management system in recent years is reviewed. First, the thermal management requirements of the lithium-ion batteries and the performance of the direct-cooling thermal management systems are introduced based on electric vehicle applications. Then the definitions and characteristics of commonly used refrigerants are systematically analyzed. The next part introduces the research progress of the pure refrigerants and mixed refrigerants in detail. Finally, the problems and future prospects of the refrigerants are summarized, and feasible research directions for refrigerants in thefuture direct-cooling thermal management systems are proposed.

     

  • [1]
    XU J, LAN C, QIAO Y, et al.Prevent thermal runaway of lithium-ion batteries with minichannel cooling[J].Applied Thermal Engineering, 2017, 110:883-890. doi: 10.1016/j.applthermaleng.2016.08.151
    [2]
    WU W X, WANG S, WU W, et al.A critical review of battery thermal performance and liquid based battery thermal management[J].Energy Conversion and Management, 2019, 182:262-281. doi: 10.1016/j.enconman.2018.12.051
    [3]
    KIM J, OH J, LEE H.Review on battery thermal management system for electric vehicles[J].Applied Thermal Engineering, 2019, 149:192-212. doi: 10.1016/j.applthermaleng.2018.12.020
    [4]
    GOU J, LIU W.Feasibility study on a novel 3D vapor chamber used for Li-ion battery thermal management system of electric vehicle[J].Applied Thermal Engineering, 2019, 152:362-369. doi: 10.1016/j.applthermaleng.2019.02.034
    [5]
    IANNICIELLO L, BIWOLÉ P H, ACHARD P.Electric vehicles batteries thermal management systems employing phase change materials[J].Journal of Power Sources, 2018, 378:383-403. doi: 10.1016/j.jpowsour.2017.12.071
    [6]
    ZHANG X, LIU C, RAO Z.Experimental investigation on thermal management performance of electric vehicle power battery using composite phase change material[J].Journal of Cleaner Production, 2018, 201:916-924. doi: 10.1016/j.jclepro.2018.08.076
    [7]
    SMITH J, SINGH R, HINTERBERGER M, et al.Battery thermal management system for electric vehicle using heat pipes[J].International Journal of Thermal Sciences, 2018, 134:517-529. doi: 10.1016/j.ijthermalsci.2018.08.022
    [8]
    CEN J, LI Z, JIANG F.Experimental investigation on using the electric vehicle air conditioning system for lithium-ion battery thermal management[J].Energy for Sustainable Development, 2018, 45:88-95. doi: 10.1016/j.esd.2018.05.005
    [9]
    ZHANG G, QIN F, ZOU H, et al.Experimental study on a dual-parallel-evaporator heat pump system for thermal management of electric vehicles[C]//8th International Conference on Applied Energy (ICAE).Amsterdam: Elsevier, 2017, 105: 2390-2395.
    [10]
    AL-ZAREER M, DINCER I, ROSEN M A.Novel thermal management system using boiling cooling for high-powered lithium-ion battery packs for hybrid electric vehicles[J].Journal of Power Sources, 2017, 363:291-303. doi: 10.1016/j.jpowsour.2017.07.067
    [11]
    DENG Y, FENG C, E J, et al.Effects of different coolants and cooling strategies on the cooling performance of the power lithium ion battery system:A review[J].Applied Thermal Engineering, 2018, 142:10-29. doi: 10.1016/j.applthermaleng.2018.06.043
    [12]
    HUANG Q, LI X, ZHANG G, et al.Experimental investigation of the thermal performance of heat pipe assisted phase change material for battery thermal management system[J].Applied Thermal Engineering, 2018, 141:1092-1100. doi: 10.1016/j.applthermaleng.2018.06.048
    [13]
    ZHAO C, SOUSA A C M, JIANG F.Minimization of thermal non-uniformity in lithium-ion battery pack cooled by channeled liquid flow[J].International Journal of Heat and Mass Transfer, 2019, 129:660-670. doi: 10.1016/j.ijheatmasstransfer.2018.10.017
    [14]
    SONG W, CHEN M, CHEN Y, et al.Non-uniform effect on the thermal/aging performance of lithium-ion pouch battery[J].Applied Thermal Engineering, 2018, 128:1165-1174. doi: 10.1016/j.applthermaleng.2017.09.090
    [15]
    LIU H, WEI Z, HE W, et al.Thermal issues about Li-ion batteries and recent progress in battery thermal management systems:A review[J].Energy Conversion and Management, 2017, 150:304-330. doi: 10.1016/j.enconman.2017.08.016
    [16]
    AL-ZAREER M, DINCER I, ROSEN M A.Heat and mass transfer modeling and assessment of a new battery cooling system[J].International Journal of Heat and Mass Transfer, 2018, 126:765-778. doi: 10.1016/j.ijheatmasstransfer.2018.04.157
    [17]
    SAAB R, AL QUABEH H, ALI HM I.Variable refrigerant flow cooling assessment in humid environment using different refrigerants[J].Journal of Environmental Management, 2018, 224:243-251.
    [18]
    MESSA G V, FERRARESE G, MALAVASI S.A mixed Euler-Euler/Euler-Lagrange approach to erosion prediction[J].Wear, 2015, 342-343:138-153. doi: 10.1016/j.wear.2015.08.015
    [19]
    DAPELO D, BRIDGEMAN J.Euler-Lagrange computational fluid dynamics simulation of a full-scale unconfined anaerobic digester for wastewater sludge treatment[J].Advances in Engineering Software, 2018, 117:153-169. doi: 10.1016/j.advengsoft.2017.08.009
    [20]
    ISSAKHOV A, ZHANDAULET Y, NOGAEVA A.Numerical simulation of dam break flow for various forms of the obstacle by VOF method[J].International Journal of Multiphase Flow, 2018, 109:191-206. doi: 10.1016/j.ijmultiphaseflow.2018.08.003
    [21]
    YIN X, ZARIKOS I, KARADIMITRIOU N K, et al.Direct simulations of two-phase flow experiments of different geometry complexities using volume-of-fluid (VOF) method[J].Chemical Engineering Science, 2019, 195:820-827. doi: 10.1016/j.ces.2018.10.029
    [22]
    BILGER C, ABOUKHEDR M, VOGIATZAKI K, et al.Evaluation of two-phase flow solvers using level set and volume of fluid methods[J].Journal of Computational Physics, 2017, 345:665-686. doi: 10.1016/j.jcp.2017.05.044
    [23]
    GU Z H, WEN H L, YU C H, et al.Interface-preserving level set method for simulating dam-break flows[J].Journal of Computational Physics, 2018, 374:249-280. doi: 10.1016/j.jcp.2018.07.057
    [24]
    SCHRAGE R W.A theoretical study of interface mass transfer[D].New York: Columbia University, 1953.
    [25]
    CHIEN N B, CHOI K, OH J, et al.An experimental investigation of flow boiling heat transfer coefficient and pressure drop of R410A in various minichannel multiport tubes[J].International Journal of Heat and Mass Transfer, 2018, 127:675-686. doi: 10.1016/j.ijheatmasstransfer.2018.06.145
    [26]
    DONG C, HIBIKI T.Heat transfer correlation for two-component two-phase slug flow in horizontal pipes[J].Applied Thermal Engineering, 2018, 141:866-876. doi: 10.1016/j.applthermaleng.2018.06.029
    [27]
    DONG C, HIBIKI T.Correlation of heat transfer coefficient for two-component two-phase slug flow in a vertical pipe[J].International Journal of Multiphase Flow, 2018, 108:124-139. doi: 10.1016/j.ijmultiphaseflow.2018.07.003
    [28]
    IN S, BAEK S, JIN L, et al.Flow boiling heat transfer of R123/R134a mixture in a microchannel[J].Experimental Thermal and Fluid Science, 2018, 99:474-486. doi: 10.1016/j.expthermflusci.2018.08.013
    [29]
    AL-ZAREER M, DINCER I, ROSEN M A.Development and evaluation of a new ammonia boiling based battery thermal management system[J].Electrochimica Acta, 2018, 280:340-352. doi: 10.1016/j.electacta.2018.05.093
    [30]
    SAW L H, POON H M, THIAM H S, et al.Novel thermal management system using mist cooling for lithium-ion battery packs[J].Applied Energy, 2018, 223:146-158. doi: 10.1016/j.apenergy.2018.04.042
    [31]
    DOUBEK M, HAUBNER M, VACEK V, et al.Measurement of heat transfer coefficient in two phase flows of radiation-resistant zeotropic C2F6/C3F8 blends[J].International Journal of Heat and Mass Transfer, 2017, 113:246-256. doi: 10.1016/j.ijheatmasstransfer.2017.05.049
    [32]
    ZHANG J, KAERN M R, OMMEN T, et al.Condensation heat transfer and pressure drop characteristics of R134a, R1234ze(E), R245fa and R1233zd(E) in a plate heat exchanger[J].International Journal of Heat and Mass Transfer, 2019, 128:136-149. doi: 10.1016/j.ijheatmasstransfer.2018.08.124
    [33]
    YANG C, NALBANDIAN H, LIN F.Flow boiling heat transfer and pressure drop of refrigerants HFO-1234yf and HFC-134a in small circular tube[J].International Journal of Heat and Mass Transfer, 2018, 121:726-735. doi: 10.1016/j.ijheatmasstransfer.2017.12.161
    [34]
    KASAEIAN A, HOSSEINI S M, SHEIKHPOUR M, et al.Applications of eco-friendly refrigerants and nanorefrigerants:A review[J].Renewable and Sustainable Energy Reviews, 2018, 96:91-99. doi: 10.1016/j.rser.2018.07.033
    [35]
    ABAS N, KALAIR A R, KHAN N, et al.Natural and synthetic refrigerants, global warming:A review[J].Renewable and Sustainable Energy Reviews, 2018, 90:557-569. doi: 10.1016/j.rser.2018.03.099
    [36]
    YAPICIOGLU A, DINCER I.A review on clean ammonia as a potential fuel for power generators[J].Renewable and Sustainable Energy Reviews, 2019, 103:96-108. doi: 10.1016/j.rser.2018.12.023
    [37]
    JIANG P, ZHAO C, LIU B.Flow and heat transfer characteristics of r22 and ethanol at supercritical pressures[J].The Journal of Supercritical Fluids, 2012, 70:75-89. doi: 10.1016/j.supflu.2012.06.011
    [38]
    WANG D, TIAN R, ZHANG Y, et al.Experimental comparison of the heat transfer of supercritical R134a in a micro-fin tube and a smooth tube[J].International Journal of Heat and Mass Transfer, 2019, 129:1194-1205. doi: 10.1016/j.ijheatmasstransfer.2018.10.052
    [39]
    AMMAR S M, ABBAS N, ABBAS S, et al.Experimental investigation of condensation pressure drop of R134a in smooth and grooved multiport flat tubes of automotive heat exchanger[J].International Journal of Heat and Mass Transfer, 2019, 130:1087-1095. doi: 10.1016/j.ijheatmasstransfer.2018.11.018
    [40]
    WEN J, GU X, WANG S, et al.The comparison of condensation heat transfer and frictional pressure drop of R1234ze(E), propane and R134a in a horizontal mini-channel[J].International Journal of Refrigeration, 2018, 92:208-224. doi: 10.1016/j.ijrefrig.2018.03.006
    [41]
    DANG Y, KAMIAKA T, DANG C, et al.Liquid viscosity of low-GWP refrigerant mixtures (R32+R1234yf) and (R125+R1234yf)[J].The Journal of Chemical Thermodynamics, 2015, 89:183-188. doi: 10.1016/j.jct.2015.05.009
    [42]
    AL GHAFRI S Z, ROWLAND D, AKHFASH M, et al.Thermodynamic properties of hydrofluoroolefin (R1234yf and R1234ze(E)) refrigerant mixtures:Density, vapour-liquid equilibrium, and heat capacity data and modelling[J].International Journal of Refrigeration, 2019, 98:249-260. doi: 10.1016/j.ijrefrig.2018.10.027
    [43]
    CHOUDHARI C S, SAPALI S N.Performance investigation of natural refrigerant R290 as a substitute to R22 in refrigeration systems[C]//International Conference on Recent Advancement in Air Conditioning and Refrigeration (RAAR).Amsterdam: Elsevier, 2017, 109: 346-352.
    [44]
    BAE S J, KWON J, KIM S G, et al.Condensation heat transfer and multi-phase pressure drop of CO2 near the critical point in a printed circuit heat exchanger[J].International Journal of Heat and Mass Transfer, 2019, 129:1206-1221. doi: 10.1016/j.ijheatmasstransfer.2018.10.055
    [45]
    GAO Y, SHAO S, ZHAN B, et al.Heat transfer and pressure drop characteristics of ammonia during flow boiling inside a horizontal small diameter tube[J].International Journal of Heat and Mass Transfer, 2018, 127:981-996. doi: 10.1016/j.ijheatmasstransfer.2018.07.137
    [46]
    JIANG L, WANG R Z, LI J B, et al.Performance analysis on a novel sorption air conditioner for electric vehicles[J].Energy Conversion and Management, 2018, 156:515-524. doi: 10.1016/j.enconman.2017.11.077
    [47]
    LONGO G A, ZILIO C, RIGHETTI G.Condensation of the low GWP refrigerant HFC152a inside a brazed plate heat exchanger[J].Experimental Thermal and Fluid Science, 2015, 68:509-515. doi: 10.1016/j.expthermflusci.2015.06.010
    [48]
    JIN Z, EIKEVIK T M, NEKSÅ P, et al.Annual energy performance of R744 and R410A heat pumping systems[J].Applied Thermal Engineering, 2017, 117:568-576. doi: 10.1016/j.applthermaleng.2017.02.072
    [49]
    ZOU H, HUANG G, SHAO S, et al.Experimental study on heating performance of an R1234yf heat pump system for electric cars[C]//9th International Conference on Applied Energy (ICAE).Amsterdam: Elsevier, 2017, 142: 1015-1021.
    [50]
    HIROSE M, ICHINOSE J, INOUE N.Development of the general correlation for condensation heat transfer and pressure drop inside horizontal 4 mm small-diameter smooth and microfin tubes[J].International Journal of Refrigeration, 2018, 90:238-248. doi: 10.1016/j.ijrefrig.2018.04.014
    [51]
    LI H, HRNJAK P.Flow visualization of R32 in parallel-port microchannel tube[J].International Journal of Heat and Mass Transfer, 2019, 128:1-11. doi: 10.1016/j.ijheatmasstransfer.2018.08.120
    [52]
    HE G, ZHOU S, LI D, et al.Experimental study on the flow boiling heat transfer characteristics of R32 in horizontal tubes[J].International Journal of Heat and Mass Transfer, 2018, 125:943-958. doi: 10.1016/j.ijheatmasstransfer.2018.04.116
    [53]
    LONGO G A, MANCIN S, RIGHETTI G, et al.Saturated vapour condensation of R134a inside a 4 mm ID horizontal smooth tube:Comparison with the low GWP substitutes R152a, R1234yf and R1234ze(E)[J].International Journal of Heat and Mass Transfer, 2019, 133:461-473. doi: 10.1016/j.ijheatmasstransfer.2018.12.115
    [54]
    ILLÁN-GÓMEZ F, GARCÍA-CASCALES J R.Experimental comparison of an air-to-water refrigeration system working with R134a and R1234yf[J].International Journal of Refrigeration, 2019, 97:124-131. doi: 10.1016/j.ijrefrig.2018.09.026
    [55]
    LIU C, ZHANG Y, GAO T, et al.Performance evaluation of propane heat pump system for electric vehicle in cold climate[J].International Journal of Refrigeration, 2018, 95:51-60. doi: 10.1016/j.ijrefrig.2018.08.020
    [56]
    WANG D, YU B, HU J, et al.Heating performance characteristics of CO2 heat pump system for electrical vehicle in a cold climate[J].International Journal of Refrigeration, 2018, 85:27-41. doi: 10.1016/j.ijrefrig.2017.09.009
    [57]
    MOTA-BABILONI A, NAVARRO-ESBRÍ J, BARRAGÁN-CERVERA Á, et al.Analysis based on EU regulation No 517/2014 of new HFC/HFO mixtures as alternatives of high GWP refrigerants in refrigeration and HVAC systems[J].International Journal of Refrigeration, 2015, 52:21-31. doi: 10.1016/j.ijrefrig.2014.12.021
    [58]
    ZHANG X.Heat transfer and enhancement analyses of flow boiling for R417A and R22[J].Experimental Thermal and Fluid Science, 2011, 35(7):1334-1342. doi: 10.1016/j.expthermflusci.2011.04.020
    [59]
    HARBY K.Hydrocarbons and their mixtures as alternatives to environmental unfriendly halogenated refrigerants:An updated overview[J].Renewable and Sustainable Energy Reviews, 2017, 73:1247-1264. doi: 10.1016/j.rser.2017.02.039
    [60]
    KASERA S, BHADURI S C.Performance of R407C as an alternate to R22: A review[C]//International Conference on Recent Advancement in Air Conditioning and Refrigeration(RAAR).Amsterdam: Elsevier, 2017, 109: 4-10.
    [61]
    ZHANG L, YANG C, LIU H, et al.Theoretical investigation on the properties of R744/R290 mixtures[C]//10th International Symposium on Heating, Ventilation and Air Conditioning(ISHVAC).Amsterdam: Elsevier, 2017, 205: 1620-1626.
    [62]
    LI M, GUO Q, LV J, et al.Research on condensation heat transfer characteristics of R447A, R1234ze, R134a and R32 in multi-port micro-channel tubes[J].International Journal of Heat and Mass Transfer, 2018, 118:637-650. doi: 10.1016/j.ijheatmasstransfer.2017.10.101
    [63]
    YU B, YANG J, WANG D, et al.Modeling and theoretical analysis of a CO2-propane autocascade heat pump for electrical vehicle heating[J].International Journal of Refrigeration, 2018, 95:146-155. doi: 10.1016/j.ijrefrig.2018.07.030
    [64]
    JIN P, ZHAO C, JI W, et al.Experimental investigation of R410A and R32 falling film evaporation on horizontal enhanced tubes[J].Applied Thermal Engineering, 2018, 137:739-748. doi: 10.1016/j.applthermaleng.2018.03.060
    [65]
    MYLONA S K, HUGHES T J, SAEED A A, et al.Thermal conductivity data for refrigerant mixtures containing R1234yf and R1234ze(E)[J].The Journal of Chemical Thermodynamics, 2019, 133:135-142. doi: 10.1016/j.jct.2019.01.028
    [66]
    YANG M, ZHANG H, MENG Z, et al.Experimental study on R1234yf/R134a mixture(R513A) as R134a replacement in a domestic refrigerator[J].Applied Thermal Engineering, 2019, 146:540-547. doi: 10.1016/j.applthermaleng.2018.09.122
  • Relative Articles

    [1]ZHANG X,WANG Z T,BAI C P,et al. Analysis and suppression of low-frequency harmonic current in space low-speed direct-driven servo system[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(12):3603-3614 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0907.
    [2]PENG Zheng, GUO Yuandong, FU Zhendong, ZHANG Hongxing, JIANG Lifeng, JIA Zhichao, BI Hanli, LIN Guiping. Experimental research and system integration verification of nitrogen cryogenic loop heat pipe[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0482
    [3]HE Yuanhua, LIANG Jiaxin, LI Zitong, HUANG Jiang. Progress in the investigation of Electro-Thermal Coupled Catastrophic Mechanisms in lithium-ion battery modules[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0559
    [4]YANG X Y,MA W B,XIE S. Influence of slight over-discharge on aging behavior of lithium-ion batteries in high-temperature environments[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(12):3903-3911 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0634.
    [5]ZHANG Q S,QU Y R. Research on toxicity of gases of thermal runaway released from ternary lithium-ion batteries featuring cyclic aging process[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(6):1761-1769 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0534.
    [6]ZHANG Q S,QU Y R,LIU T T. Risk analysis method for thermal runaway gas toxicity of lithium-ion batteries[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):12-19 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0217.
    [7]ZHANG Q S,LI D Q,LIAN X X. Study of corrosion and hydrogen evolution risk of waded lithium ion-battery[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(7):2083-2092 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0617.
    [8]HE Lan, LIU Qiang, YANG Yan-chu, ZHU Rong-chen, ZHOU Jiang-hua. Influence of cold cloud radiation to the thermal-dynamic characteristics of super-pressure balloon[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0435
    [9]LI N,GUO Y D,XU C,et al. Design and experiment of cryogenic loop heat pipe of two-dimensional pointing at liquid nitrogen zone[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1573-1582 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0500.
    [10]ZHANG Qingsong, LI Dongqi, YANG Juan. Effect of vibration on cyclic and thermal runaway characteristics of lithium ion batteries[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0267
    [11]YANG Shi-chun, WANG Xiao, CHEN Fei, ZHENG Yi-fan, ZHONG Yi-lin, ZHOU Si-da. Advances in prognosis and health management technologies of lithium-ion batteries[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0296
    [12]GAO H T,CHEN Y X. A machine learning based method for lithium-ion battery state of health classification and prediction[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(12):3467-3475 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0154.
    [13]ZHANG Q S,LIU T T,HAO C L,et al. Rapid detection analysis method of thermal runaway gas composition and risk of lithium ion battery[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(9):2227-2233 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0668.
    [14]ZHANG Q S,LIU T T,ZHAO Z H. Quantitative method of influence of thermal runaway gas combustion on thermal runaway propagation of lithium-ion battery[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(1):17-22 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0212.
    [15]ZHANG Y G,GUO X X,XUE W Y,et al. Research on multi-scale thermal safety of lithium-ion power battery system[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(1):31-44 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0167.
    [16]YAN X Y,ZHOU S D,LU Y,et al. Degradation mechanism and influencing factors on lithium-ion batteries[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(6):1402-1413 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0458.
    [17]HE J X,XIE S,CHEN X T. Influence mechanism of air pressure and heating power on thermal safety of lithium-ion battery[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(11):3197-3206 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.1017.
    [18]YANG Shichun, LI Qiangwei, ZHOU Sida, ZHANG Zhengjie, MA Yuan, CHEN Fei. Construction of digital twin model of lithium-ion battery for intelligent management[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(9): 1734-1744. doi: 10.13700/j.bh.1001-5965.2022.0593
    [19]XIE Song, PING Xianke, GONG Yize. Effect of high altitude and low pressure on cycle performance of lithium-ion batteries[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(10): 1883-1888. doi: 10.13700/j.bh.1001-5965.2021.0776
    [20]LYU Mengyuan, ZHAI Li, HU Guixing. Conducted electromagnetic interference of wireless charging system with bilateral LCC of electric vehicle[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(10): 2079-2086. doi: 10.13700/j.bh.1001-5965.2021.0191
  • Cited by

    Periodical cited type(10)

    1. 张彩虹,韩飞,陈露,丛日振,谷祥盛,李强. 电池直冷热管理技术及控制策略研究. 时代汽车. 2024(14): 169-171 .
    2. 常晏宁,保翔. 欧盟新版氟化温室气体法规对汽车行业影响浅析. 中国汽车. 2024(12): 16-19 .
    3. 高帅,王俊博,朱佳慧,毛佳妮,梁晓瑜. 制冷剂相态变化对动力电池直冷系统温控性能的影响分析. 制冷学报. 2023(03): 58-66+80 .
    4. 赵金辉,姜冰,钱鑫鑫,孔清杰. 基于双置直冷板技术的动力电池热管理系统性能研究. 低温工程. 2023(06): 50-57 .
    5. 郭美华. 电动汽车用锂离子电池热管理系统的研究. 内燃机与配件. 2022(01): 214-216 .
    6. 吴兵,唐豪. 电池热管理试验平台的开发与研究. 能源工程. 2022(03): 39-44 .
    7. 谢锦涛,吕奕明,王定标,彭旭,向飒. 新型混合制冷剂R744/R152a的热力学性能评价. 低温与超导. 2021(06): 93-98 .
    8. 张荣荣,邹江,孙祥立,陈娟,郭瑶,任滨. 降压装置对电动车动力电池制冷剂直接冷却系统的影响. 制冷学报. 2021(03): 107-113+158 .
    9. 田晟,肖佳将. 基于正交层次法的锂离子电池热管散热模组数值模拟分析. 化工学报. 2020(08): 3510-3517 .
    10. 王酉方. 新能源汽车动力电池散热管理系统优化设计研究. 南方农机. 2020(24): 170+173 .

    Other cited types(17)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Tables(5)

    Article Metrics

    Article views(1398) PDF downloads(624) Cited by(27)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return