Kou Changhe, Cheng Xiaoquan, Li Zhengnenget al. Prediction of the Compressive Strength for Composite Honeycomb Core Sandwich Panels after Low Speed Impact[J]. Journal of Beijing University of Aeronautics and Astronautics, 1998, 24(5): 555-558. (in Chinese)
Citation: BI Jing, MA Bolin, ZHANG Yanling, et al. Hot forming limit of TA15 titanium alloy based on M-K model[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(5): 893-899. doi: 10.13700/j.bh.1001-5965.2019.0358(in Chinese)

Hot forming limit of TA15 titanium alloy based on M-K model

doi: 10.13700/j.bh.1001-5965.2019.0358
Funds:

National Natural Science Foundation of China 51875027

China Postdoctoral Science Foundation 2018M630058

  • Received Date: 03 Jul 2019
  • Accepted Date: 20 Sep 2019
  • Publish Date: 20 May 2020
  • In order to investigate the forming limit of TA15 titanium alloy at high temperature and clarify the influence of parameters in the constitutive equation on the forming limit, the constitutive relationship of TA15 titanium alloy in high temperature environment was established considering the high temperature softening phenomenon, and meanwhile, the forming limit of TA15 titanium alloy plate at high temperature was obtained by high temperature forming limit test platform and theoretical predicted through applying the M-K instability theory, respectively. The theoretical results indicate that the major strain under the plane strain state increases from 0.18 to 0.33 when the temperature increases from 800℃ to 880℃. Based on the M-K instability theory and the established high temperature constitutive model, the influence of the parameters in the constitutive equation on the forming limit is analyzed. The results show that, increasing the values of hardening index and the rate sensitivity factor, and decreasing the value of the softening factor can increase the strain hardening rate, and consequently the strain state in the groove region is delayed approaching the plane strain state. Therefore the position of the forming limit curve in strain space is improved. At the same time, the theoretical calculation results show that the influence of the strain rate sensitivity factor on the left side of the forming limit curve is greater than that on the right side, and it is attributed to the fact that the effect of the strain rate sensitivity factor on the strain hardening rate under different strain size is different.

     

  • [1]
    金和喜, 魏克湘, 李建明, 等.航空用钛合金研究进展[J].中国有色金属学报, 2015, 25(2):280-292.

    JIN H X, WEI K X, LI J M, et al.Research development of titanium alloy in aerospace industry[J].The Chinese Journal of Nonferrous Metals, 2015, 25(2): 280-292(in Chinese).
    [2]
    李兴无, 沙爱学, 张旺峰, 等.TA15合金及其在飞机结构中的应用前景[J].钛工业进展, 2003, 20(4-5):90-94.

    LI X W, SHA A X, ZHANG W F, et al.TA15 titanium alloy and its applying prospects on airframe[J].Titanium Industry Process, 2003, 20(4-5):90-94(in Chinese).
    [3]
    李成铭, 李萍, 赵蒙, 等.TA15钛合金高温压缩变形行为与组织研究[J].航空材料学报, 2013, 33(3):25-28.

    LI C M, LI P, ZHAO M, et al.Mechanical behavior and microstructure of TA15 titanium alloy during hot compressive deformation[J].Journal of Aeronautical Materials, 2013, 33(3):25-28(in Chinese).
    [4]
    唐泽, 杨合, 孙志超, 等.TA15钛合金高温变形微观组织演变分析与数值模拟[J].中国有色金属学报, 2008, 18(4):722-727. doi: 10.3321/j.issn:1004-0609.2008.04.026

    TANG Z, YANG H, SUN Z C, et al.Microstructure evolution and numerical simulation of TA15 titanium alloy during hot compressive deformation[J].The Chinese Journal of Nonferrous Metals, 2008, 18(4):722-727(in Chinese). doi: 10.3321/j.issn:1004-0609.2008.04.026
    [5]
    沈昌武, 杨合, 孙志超, 等.基于BP神经网络的TA15钛合金本构关系建立[J].塑性工程学报, 2007, 14(4):101-104. doi: 10.3969/j.issn.1007-2012.2007.04.021

    SHEN C W, YANG H, SUN Z C, et al.Based on BP artificial neural network to building the constitutive relationship of TA15 alloy[J].Journal of Plasticity Engineering, 2007, 14(4):101-104(in Chinese). doi: 10.3969/j.issn.1007-2012.2007.04.021
    [6]
    李淼泉, 李晓丽, 龙丽, 等.TA15合金的热变形行为及加工图[J].稀有金属材料与工程, 2006, 35(9):1354-1357. doi: 10.3321/j.issn:1002-185X.2006.09.003

    LI M Q, LI X L, LONG L, et al.Deformation behavior and processing map of high temperature deformation of TA15 alloy[J].Rare Metal Materials and Engineering, 2006, 35(9):1354-1357(in Chinese). doi: 10.3321/j.issn:1002-185X.2006.09.003
    [7]
    孙志超, 杨合, 沈昌武.基于逐步回归法的TA15钛合金本构模型的建立[J].锻压技术, 2008, 33(2):110-115. doi: 10.3969/j.issn.1000-3940.2008.02.028

    SUN Z C, YANG H, SHEN C W.Establishment of TAl5 titanium alloy constitutive model based on stepwise regression method[J].Foring & Stamping Technology, 2008, 33(2):110-115(in Chinese). doi: 10.3969/j.issn.1000-3940.2008.02.028
    [8]
    MARCINIAK Z, KAZIMIERZ K.Limit strains in the process of stretch-forming sheet metals[J].International Journal of Mechanical Sciences, 1967, 9(9):609-612. doi: 10.1016/0020-7403(67)90066-5
    [9]
    马博林, 刘俊雄, 王文平, 等.钛合金高温FLD试验系统[J].锻压技术, 2015, 40(10):76-81.

    MA B L, LIU J X, WANG W P, et al.Hot FLD test system for titanium alloy[J].Forging & Stamping Technology, 2015, 40(10):76-81(in Chinese).
    [10]
    王承鑫.钛合金及Ti2AlNb金属间化合物板材热成形极限图[D].哈尔滨: 哈尔滨工业大学, 2014.

    WANG C X.Hot forming limit diagram for titanium alloy and Ti2AlNb intermetallics sheets[D].Harbin: Harbin Institute of Technology, 2014(in Chinese).
    [11]
    申发兰.TA15钛合金高温变形规律研究[D].南京: 南京航空航天大学, 2013.

    SHEN F L.Study on hot deformation rule of TA15 titanium alloy[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2013(in Chinese).
    [12]
    MA B L, WU X D, LI X J, et al.Investigation on the hot formability of TA15 titanium alloy sheet[J].Materials & Design, 2016, 94:9-16
    [13]
    YANG L, WANG B Y, LIU G, et al.Behavior and modeling of flow softening and ductile damage evolution in hot forming of TA15 alloy sheets[J].Materials & Design, 2015, 85:135-148.
    [14]
    杨雷.TA15钛合金板材高温塑性损伤本构建模与成形极限研究[D].北京: 北京科技大学, 2016.

    YANG L.Study on ductile damage constitutive model and forming limit of TA15 titanium alloy sheet at elevated temperatures[D].Beijing: University of Science and Technology Beijing, 2016(in Chinese).
    [15]
    SUN Z C, YANG H, TANG Z.Microstructural evolution model of TA15 titanium alloy based on BP neural network method and application in isothermal deformation[J].Computational Materials Science, 2010, 50(2):308-318. doi: 10.1016/j.commatsci.2010.08.020
  • Relative Articles

    [1]GAO Hongxin, ZHAO Shougen, ZHU Jialin, YU Yihao, ZHANG Zhen. Research on Measurement Methods for the Critical Bending Radius of Flexible Solar Cells[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0801
    [2]ZHANG Y,XIAO S,JIANG L F,et al. Significant wave height retrieval model of CYGNSS based on multivariate machine learning[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(5):1503-1513 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0265.
    [3]WENG Xuehui, WANG Xiaofeng, YING Peng, LIU Zhongan, ZHOU Fang, QUAN Daying. Multi-level radar signal open-set recognition based on SVM and K-means[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0369
    [4]YANG Yisong, LI Jianbo, DUAN Dengyan. Dynamic model of high confidence tilt-hinge rotor based on Newton-Euler recurrence method[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0230
    [5]FANG Y F,WU D Y,LIU T,et al. Model predictive current control of asynchronous motor in rolling mill based on sliding mode theory[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(11):3382-3390 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0576.
    [6]SHI Tong, HE Yunqin, LIANG Guozhu, PAN Hui, ZHU Pingping. Theoretic model of flow resistance for gas-filled accumulators in liquid rockets[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0748
    [7]YAN S Q,LIU W D,YANG P,et al. Multi group sparrow search algorithm based on K-means clustering[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(2):508-518 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0328.
    [8]FANG Z N,LIU C,ZHANG C Q,et al. Influencing analysis of temperature controlling accuracy of loop heat pipes and capillary limit prediction[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(12):3788-3793 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0886.
    [9]HAN X,SUN Z F,GENG D X,et al. Experiment research on high-speed ultrasonic vibration milling of titanium alloy[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1707-1714 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0519.
    [10]MA Y F,DAI S W,WANG R,et al. Nonlinear spatial K-means clustering algorithm for detection of zero-speed interval in inertial pedestrian navigation[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(10):2841-2850 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0764.
    [11]ZHOU Yu, XIA Hao, LIU Hong-yu, BAI Lei. DPC clustering algorithm based on K-reciprocal Neighbors and kernel density estimation[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0342
    [12]WANG P,LIU C H,ZHANG D N. Automatic modulation recognition method based on improved weight AdaBoost.M2 algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(8):2089-2098 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0577.
    [13]SHAO Y X,HE Z X,ZHOU Y H,et al. Area optimization of MPRM circuits based on M-AFSA[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(3):693-701 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0296.
    [14]ZHAO Yue-qing, LIN De-zhi, CHEN Hui, TANG Jia-li, CHEN Ping. Performance test and constitutive model selection of diaphragms in hot diaphragm forming[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0350
    [15]ZHOU Bin, QU Duo, YANG Xiao-yu, KONG Hua, TU Yong-guang, XU Guo-ning. Advanced perovskite photovoltaic technology for space applications[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2022.0938
    [16]WANG Tao, ZHANG Wanxin, LI Meng, BU Xueqin, ZHANG Chen, WANG Hailiang. Performance analysis of skin temperature prediction model combining Smith's thermoregulation model with Tanabe model[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(12): 2482-2493. doi: 10.13700/j.bh.1001-5965.2021.0143
    [17]YANG Hui, FAN Shuoshuo, WANG Yan, LIU Rongqiang, XIAO Hong. Stiffness optimization of M-shaped boom based on radial basis function surrogate model[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(11): 2121-2129. doi: 10.13700/j.bh.1001-5965.2021.0091
    [18]YANG Lijun, HUANG Dongqi, HAN Wang, LI Jingxuan, FU Qingfei. Influence of flow topology on instability and atomization of liquid jets[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(9): 1757-1766. doi: 10.13700/j.bh.1001-5965.2022.0608
    [19]JIANG Yu, YANG Chao, WU Zhigang. Mechanism analysis of a new aeroservoelastic instability mode[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(7): 1314-1323. doi: 10.13700/j.bh.1001-5965.2021.0571
    [20]LU Cheng, XU Tingxue, WANG Hong. A fault diagnosis model of plasticity echo state network based on L1/2-norm regularization[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(3): 535-541. doi: 10.13700/j.bh.1001-5965.2017.0214
  • Cited by

    Periodical cited type(6)

    1. 莫宁宁,冯治国,陶亮,江玉莲,刘勇. TA1薄壁管约束压缩为鼓包的变形行为研究. 材料导报. 2025(10): 201-209 .
    2. 于清波,李建明,杨月冰,张屿,甘涌泉,刘海波,刘阔. TA15钛合金低温力学性能及J-C本构模型的研究. 工具技术. 2024(04): 77-83 .
    3. 孟宪国,闫静锴,雒亚涛,周兵营,崔学习,吴向东. 基于M-K理论的NbTiAl合金高温成形极限曲线预测. 精密成形工程. 2023(01): 1-7 .
    4. 栾伟雄,武小娟,孟凡玲. TA15钛合金不等厚V型材挤压模具设计. 沈阳师范大学学报(自然科学版). 2022(03): 206-211 .
    5. 蔡旺,钱凌云,孙朝阳,张帅,李明,姚松林. 基于CPFE-MK模型的TWIP钢板成形极限预测. 塑性工程学报. 2021(06): 53-60 .
    6. 王彦菊,栾伟,孟宝,沙爱学,贾崇林. GH605板料成形极限影响因素分析. 航空材料学报. 2021(05): 60-68 .

    Other cited types(5)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-072024-082024-092024-102024-112024-122025-012025-022025-032025-042025-052025-06010203040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 27.3 %FULLTEXT: 27.3 %META: 70.4 %META: 70.4 %PDF: 2.3 %PDF: 2.3 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 12.2 %其他: 12.2 %其他: 0.1 %其他: 0.1 %Seattle: 0.1 %Seattle: 0.1 %上海: 0.4 %上海: 0.4 %北京: 2.6 %北京: 2.6 %十堰: 0.1 %十堰: 0.1 %南京: 0.1 %南京: 0.1 %南通: 0.1 %南通: 0.1 %合肥: 0.3 %合肥: 0.3 %咸阳: 0.3 %咸阳: 0.3 %哈密: 0.3 %哈密: 0.3 %哈尔滨: 0.3 %哈尔滨: 0.3 %唐山: 0.3 %唐山: 0.3 %嘉兴: 0.4 %嘉兴: 0.4 %大连: 1.2 %大连: 1.2 %天津: 1.3 %天津: 1.3 %太原: 0.1 %太原: 0.1 %威海: 0.3 %威海: 0.3 %安阳: 0.1 %安阳: 0.1 %宣城: 0.3 %宣城: 0.3 %常州: 0.1 %常州: 0.1 %平顶山: 0.1 %平顶山: 0.1 %库比蒂诺: 0.5 %库比蒂诺: 0.5 %廊坊: 0.6 %廊坊: 0.6 %张家口: 0.8 %张家口: 0.8 %惠州: 0.3 %惠州: 0.3 %成都: 0.1 %成都: 0.1 %扬州: 0.8 %扬州: 0.8 %新乡: 0.3 %新乡: 0.3 %无锡: 0.1 %无锡: 0.1 %昆明: 0.3 %昆明: 0.3 %杭州: 1.4 %杭州: 1.4 %武汉: 0.5 %武汉: 0.5 %江门: 0.4 %江门: 0.4 %沈阳: 0.5 %沈阳: 0.5 %洛阳: 0.1 %洛阳: 0.1 %深圳: 6.2 %深圳: 6.2 %温州: 0.4 %温州: 0.4 %漯河: 2.7 %漯河: 2.7 %潍坊: 0.1 %潍坊: 0.1 %石家庄: 1.0 %石家庄: 1.0 %秦皇岛: 0.3 %秦皇岛: 0.3 %芒廷维尤: 9.9 %芒廷维尤: 9.9 %芝加哥: 0.9 %芝加哥: 0.9 %苏州: 0.5 %苏州: 0.5 %莫斯科: 0.1 %莫斯科: 0.1 %衡水: 0.6 %衡水: 0.6 %西宁: 43.3 %西宁: 43.3 %西安: 0.5 %西安: 0.5 %贵阳: 0.1 %贵阳: 0.1 %运城: 0.5 %运城: 0.5 %郑州: 1.0 %郑州: 1.0 %重庆: 0.3 %重庆: 0.3 %银川: 0.1 %银川: 0.1 %长沙: 2.4 %长沙: 2.4 %阜新: 0.1 %阜新: 0.1 %青岛: 0.6 %青岛: 0.6 %马鞍山: 0.1 %马鞍山: 0.1 %黄冈: 0.1 %黄冈: 0.1 %齐齐哈尔: 0.1 %齐齐哈尔: 0.1 %其他其他Seattle上海北京十堰南京南通合肥咸阳哈密哈尔滨唐山嘉兴大连天津太原威海安阳宣城常州平顶山库比蒂诺廊坊张家口惠州成都扬州新乡无锡昆明杭州武汉江门沈阳洛阳深圳温州漯河潍坊石家庄秦皇岛芒廷维尤芝加哥苏州莫斯科衡水西宁西安贵阳运城郑州重庆银川长沙阜新青岛马鞍山黄冈齐齐哈尔

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(1)

    Article Metrics

    Article views(905) PDF downloads(385) Cited by(11)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return