Citation: | WANG Zechen, WANG Shupeng, SUN Liyuan, et al. Weibo tendency analysis based on sentimental object recognition and sentimental rules[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(2): 301-310. doi: 10.13700/j.bh.1001-5965.2020.0404(in Chinese) |
Weibo contains a large number of information reflecting users' likes and dislikes, which is important for popular trend judgment, precision marketing, public opinion monitoring, etc. However, the existing methods tend to focus on the classification of Weibo sentiment. In order to solve the problem of Weibo tendentiousness analysis and position detection, we employ semisupervised learning method, through collaborative training and active learning. We train entity recognition models and combine deep learning with emotional rules. Moreover, the sentiment rules based on principal component analysis are constructed to extract the main components of sentences, normalize the spoken text into the specified format. Then we use the positive and negative aspects of directional entities, the positive and negative meanings of emotional words, and the sentence components of emotional words to judge the tendency of blog posts, and conduct deeper analysis on position classification. Finally, the self comparison experiment and other comparison experiment on different scale data sets show that with the increase of the number of blog posts of labeled entities, the accuracy of the model continues to improve, and the accuracy of this method is significantly higher than the comparison method, which is 2.79% and 10.00% higher than the existing research methods.
[1] |
GIACHANOU A, MELE I, CRESTANI F. Explaining sentiment spikes in twitter[C]//Proceedings of the 25th ACM International on Conference on Information and Knowledge Management. New York: ACM, 2016: 2263-2268.
|
[2] |
王志涛, 於志文, 郭斌, 等. 基于词典和规则集的中文微博情感分析[J]. 计算机工程与应用, 2015, 51(8): 218-225. doi: 10.3778/j.issn.1002-8331.1308-0187
WANG Z T, YU Z W, GUO B, et al. Sentiment analysis of Chinese micro blog based on lexicon and rule set[J]. Computer Engineering and Applications, 2015, 51(8): 218-225(in Chinese). doi: 10.3778/j.issn.1002-8331.1308-0187
|
[3] |
王灿伟. 基于主题提取的海量微博情感分析[J]. 南京大学学报(自然科学), 2017, 53(3): 549-556. https://www.cnki.com.cn/Article/CJFDTOTAL-NJDZ201703019.htm
WANG C W. Sentimental analysis of massive micro-blog based on topic extraction[J]. Journal of Nanjing University (Natural Sciences), 2017, 53(3): 549-556(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-NJDZ201703019.htm
|
[4] |
EBRAHIMI J, DOU D J, LOWD D. A joint sentiment-target-stance model for stance classification in tweets[C]//Proceedings of the 26th International Conference on Computational Linguistics, 2016: 2656-2665.
|
[5] |
PAK A, PAROUBEK P. Twitter as a corpus for sentiment analysis and opinion mining[C]//Proceedings of International Conference on Language Resource and Evaluation, 2010: 13-20.
|
[6] |
PANG B, LEE L, VAITHYANATHAN S, et al. Thumbs up : Sentiment classification using machine learning techniques[C]//Proceedings of the ACL-02 Conference on Empirical Methods on Natural Language Processing. New York: ACM, 2002: 79-86.
|
[7] |
奠雨洁, 金琴, 吴慧敏. 基于多文本特征融合的中文微博的立场检测[J]. 计算机工程与应用, 2017, 53(21): 77-84. doi: 10.3778/j.issn.1002-8331.1702-0292
DIAN Y J, JIN Q, WU H M. Stance detection in Chinese microblogs via fusing multiple text features[J]. Computer Engineering and Applications, 2017, 53(21): 77-84(in Chinese). doi: 10.3778/j.issn.1002-8331.1702-0292
|
[8] |
李俭兵, 刘栗材. 基于改进型神经网络的影评文本情感分析算法[J]. 计算机工程与科学, 2019, 41(12): 2261-2269. doi: 10.3969/j.issn.1007-130X.2019.12.023
LI J B, LIU S C. A film criticism sentiment analysis algorithm based on improved neural network[J]. Computer Engineering and Science, 2019, 41(12): 2261-2269(in Chinese). doi: 10.3969/j.issn.1007-130X.2019.12.023
|
[9] |
LI D, QIAN J. Text sentiment analysis based on long and short term memory[C]//2016 First IEEE International Conference on Computer Communication and the Internet (ICCCI). Piscataway: IEEE Press, 2016: 471-475.
|
[10] |
张仰森, 郑佳, 黄改娟, 等. 基于双重注意力模型的微博情感分析方法[J]. 清华大学学报(自然科学版), 2018, 58(2): 122-130. https://www.cnki.com.cn/Article/CJFDTOTAL-QHXB201802002.htm
ZHANG Y S, ZHENG J, HUANG G J, et al. Microblog sentiment analysis method based on a double attention model[J]. Journal of Tsinghua University(Science and Technology), 2018, 58(2): 122-130(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-QHXB201802002.htm
|
[11] |
朱晓光, 聂培尧, 林培光. 基于监督学习的微博情感分类方法[J]. 计算机应用与软件, 2015, 32(8): 238-242. doi: 10.3969/j.issn.1000-386x.2015.08.057
ZHU X G, NIE P Y, LIN P G. Supervised learning based on microblogging sentiment classification method[J]. Computer Applications and Software, 2015, 32(8): 238-242(in Chinese). doi: 10.3969/j.issn.1000-386x.2015.08.057
|
[12] |
段吉东, 刘双荣, 马坤, 等. 基于集成学习的文本情感分类方法[J]. 济南大学学报(自然科学版), 2019, 33(6): 483-488. https://www.cnki.com.cn/Article/CJFDTOTAL-SDJC201906001.htm
DUAN J D, LIU S R, MA K, et al. Text sentiment classification method based on ensemble learning[J]. Journal of University of Jinan(Science and Technology), 2019, 33(6): 483-488(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SDJC201906001.htm
|
[13] |
TURNEY P D. Thumbs up or thumbs down : Semantic orientation applied to unsupervised classification of reviews[C]//Proceedings of the 40th Annual Meeting on Association for Computational Linguistics, 2002: 417-424.
|
[14] |
BLOOM K, ARGAMON S. Automated learning of appraisal extraction patterns[J]. Language and Computers, 2010, 71(2): 249-260.
|
[15] |
GUO J L, PENG J E, WANG H C. An opinion feature extraction approach based on a multidimensional sentence analysis model[J]. Cybernetics and Systems, 2013, 44(5): 379-401. doi: 10.1080/01969722.2013.789649
|
[16] |
AGRAWAL A, XIE B, VOVSHA I, et al. Sentiment analysis of Twitter data[J]. International Journal of Computer Applications, 2013, 139(11): 880-887
|
[17] |
CAMBRIA E, PORIA S, HAZARIKA D, et al. Senticnet5: Discovering conceptual primitives for sentiment analysis by means of context embeddings[C]//32nd AAAI Conference on Artificial Intelligence, 2018: 1795-1802.
|
[18] |
DANDAPAT S. Handbook of natural language processing(second edition)[J]. Machine Translation, 2011, 25(4): 377-381. doi: 10.1007/s10590-011-9117-6
|
[19] |
SINDHWANI V, MELVILLE P. Document-word co-regularization for semi-supervised sentiment analysis[C]//18th IEEE International Conference on Data Mining. Piscataway: IEEE Press, 2008: 1025-1030.
|
[20] |
LIU Z, DONG X, GUAN Y, et al. Reserved self-training: A semi-supervised sentiment classification method for Chinese micro-blogs[C]//Proceedings of LJCNLP, 2013: 455-462.
|
[21] |
SCUDDER H. Probability of error of some adaptive pattern-recognition machines[J]. IEEE Transactions on Information Theory, 1965, 11(3): 363-371. doi: 10.1109/TIT.1965.1053799
|
[22] |
陈培文, 傅秀芬. 采用SVM方法的文本情感极性分类研究[J]. 广东工业大学学报, 2014, 31(3): 95-101. doi: 10.3969/j.issn.1007-7162.2014.03.017
CHEN P W, FU X F. Research on sentiment classification of texts based on SVM[J]. Journal of Guangdong University of Technology, 2014, 31(3): 95-101(in Chinese). doi: 10.3969/j.issn.1007-7162.2014.03.017
|
[23] |
张成功, 刘培玉, 朱振方, 等. 一种基于极性词典的情感分析方法[J]. 山东大学学报, 2012, 47(3): 47-50. https://www.cnki.com.cn/Article/CJFDTOTAL-SDDX201203011.htm
ZHANG C G, LIU P Y, ZHU Z F, et al. A sentiment analysis method based on a polarity lexicon[J]. Journal of Shandong University, 2012, 47(3): 47-50(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SDDX201203011.htm
|