Wang Pengbo, Zhou Yinqing, Chen Jie, et al. Imaging algorithm for high-resolution space-borne spotlight SAR data based on two dimension deramp processing[J]. Journal of Beijing University of Aeronautics and Astronautics, 2007, 33(01): 72-75. (in Chinese)
Citation: WANG Zechen, WANG Shupeng, SUN Liyuan, et al. Weibo tendency analysis based on sentimental object recognition and sentimental rules[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(2): 301-310. doi: 10.13700/j.bh.1001-5965.2020.0404(in Chinese)

Weibo tendency analysis based on sentimental object recognition and sentimental rules

doi: 10.13700/j.bh.1001-5965.2020.0404
Funds:

National Natural Science Foundation of China 61931019

More Information
  • Corresponding author: WANG Shupeng, E-mail: wangshupeng@iie.ac.cn
  • Received Date: 09 Aug 2020
  • Accepted Date: 25 Sep 2020
  • Publish Date: 20 Feb 2022
  • Weibo contains a large number of information reflecting users' likes and dislikes, which is important for popular trend judgment, precision marketing, public opinion monitoring, etc. However, the existing methods tend to focus on the classification of Weibo sentiment. In order to solve the problem of Weibo tendentiousness analysis and position detection, we employ semisupervised learning method, through collaborative training and active learning. We train entity recognition models and combine deep learning with emotional rules. Moreover, the sentiment rules based on principal component analysis are constructed to extract the main components of sentences, normalize the spoken text into the specified format. Then we use the positive and negative aspects of directional entities, the positive and negative meanings of emotional words, and the sentence components of emotional words to judge the tendency of blog posts, and conduct deeper analysis on position classification. Finally, the self comparison experiment and other comparison experiment on different scale data sets show that with the increase of the number of blog posts of labeled entities, the accuracy of the model continues to improve, and the accuracy of this method is significantly higher than the comparison method, which is 2.79% and 10.00% higher than the existing research methods.

     

  • [1]
    GIACHANOU A, MELE I, CRESTANI F. Explaining sentiment spikes in twitter[C]//Proceedings of the 25th ACM International on Conference on Information and Knowledge Management. New York: ACM, 2016: 2263-2268.
    [2]
    王志涛, 於志文, 郭斌, 等. 基于词典和规则集的中文微博情感分析[J]. 计算机工程与应用, 2015, 51(8): 218-225. doi: 10.3778/j.issn.1002-8331.1308-0187

    WANG Z T, YU Z W, GUO B, et al. Sentiment analysis of Chinese micro blog based on lexicon and rule set[J]. Computer Engineering and Applications, 2015, 51(8): 218-225(in Chinese). doi: 10.3778/j.issn.1002-8331.1308-0187
    [3]
    王灿伟. 基于主题提取的海量微博情感分析[J]. 南京大学学报(自然科学), 2017, 53(3): 549-556.

    WANG C W. Sentimental analysis of massive micro-blog based on topic extraction[J]. Journal of Nanjing University (Natural Sciences), 2017, 53(3): 549-556(in Chinese).
    [4]
    EBRAHIMI J, DOU D J, LOWD D. A joint sentiment-target-stance model for stance classification in tweets[C]//Proceedings of the 26th International Conference on Computational Linguistics, 2016: 2656-2665.
    [5]
    PAK A, PAROUBEK P. Twitter as a corpus for sentiment analysis and opinion mining[C]//Proceedings of International Conference on Language Resource and Evaluation, 2010: 13-20.
    [6]
    PANG B, LEE L, VAITHYANATHAN S, et al. Thumbs up : Sentiment classification using machine learning techniques[C]//Proceedings of the ACL-02 Conference on Empirical Methods on Natural Language Processing. New York: ACM, 2002: 79-86.
    [7]
    奠雨洁, 金琴, 吴慧敏. 基于多文本特征融合的中文微博的立场检测[J]. 计算机工程与应用, 2017, 53(21): 77-84. doi: 10.3778/j.issn.1002-8331.1702-0292

    DIAN Y J, JIN Q, WU H M. Stance detection in Chinese microblogs via fusing multiple text features[J]. Computer Engineering and Applications, 2017, 53(21): 77-84(in Chinese). doi: 10.3778/j.issn.1002-8331.1702-0292
    [8]
    李俭兵, 刘栗材. 基于改进型神经网络的影评文本情感分析算法[J]. 计算机工程与科学, 2019, 41(12): 2261-2269. doi: 10.3969/j.issn.1007-130X.2019.12.023

    LI J B, LIU S C. A film criticism sentiment analysis algorithm based on improved neural network[J]. Computer Engineering and Science, 2019, 41(12): 2261-2269(in Chinese). doi: 10.3969/j.issn.1007-130X.2019.12.023
    [9]
    LI D, QIAN J. Text sentiment analysis based on long and short term memory[C]//2016 First IEEE International Conference on Computer Communication and the Internet (ICCCI). Piscataway: IEEE Press, 2016: 471-475.
    [10]
    张仰森, 郑佳, 黄改娟, 等. 基于双重注意力模型的微博情感分析方法[J]. 清华大学学报(自然科学版), 2018, 58(2): 122-130.

    ZHANG Y S, ZHENG J, HUANG G J, et al. Microblog sentiment analysis method based on a double attention model[J]. Journal of Tsinghua University(Science and Technology), 2018, 58(2): 122-130(in Chinese).
    [11]
    朱晓光, 聂培尧, 林培光. 基于监督学习的微博情感分类方法[J]. 计算机应用与软件, 2015, 32(8): 238-242. doi: 10.3969/j.issn.1000-386x.2015.08.057

    ZHU X G, NIE P Y, LIN P G. Supervised learning based on microblogging sentiment classification method[J]. Computer Applications and Software, 2015, 32(8): 238-242(in Chinese). doi: 10.3969/j.issn.1000-386x.2015.08.057
    [12]
    段吉东, 刘双荣, 马坤, 等. 基于集成学习的文本情感分类方法[J]. 济南大学学报(自然科学版), 2019, 33(6): 483-488.

    DUAN J D, LIU S R, MA K, et al. Text sentiment classification method based on ensemble learning[J]. Journal of University of Jinan(Science and Technology), 2019, 33(6): 483-488(in Chinese).
    [13]
    TURNEY P D. Thumbs up or thumbs down : Semantic orientation applied to unsupervised classification of reviews[C]//Proceedings of the 40th Annual Meeting on Association for Computational Linguistics, 2002: 417-424.
    [14]
    BLOOM K, ARGAMON S. Automated learning of appraisal extraction patterns[J]. Language and Computers, 2010, 71(2): 249-260.
    [15]
    GUO J L, PENG J E, WANG H C. An opinion feature extraction approach based on a multidimensional sentence analysis model[J]. Cybernetics and Systems, 2013, 44(5): 379-401. doi: 10.1080/01969722.2013.789649
    [16]
    AGRAWAL A, XIE B, VOVSHA I, et al. Sentiment analysis of Twitter data[J]. International Journal of Computer Applications, 2013, 139(11): 880-887
    [17]
    CAMBRIA E, PORIA S, HAZARIKA D, et al. Senticnet5: Discovering conceptual primitives for sentiment analysis by means of context embeddings[C]//32nd AAAI Conference on Artificial Intelligence, 2018: 1795-1802.
    [18]
    DANDAPAT S. Handbook of natural language processing(second edition)[J]. Machine Translation, 2011, 25(4): 377-381. doi: 10.1007/s10590-011-9117-6
    [19]
    SINDHWANI V, MELVILLE P. Document-word co-regularization for semi-supervised sentiment analysis[C]//18th IEEE International Conference on Data Mining. Piscataway: IEEE Press, 2008: 1025-1030.
    [20]
    LIU Z, DONG X, GUAN Y, et al. Reserved self-training: A semi-supervised sentiment classification method for Chinese micro-blogs[C]//Proceedings of LJCNLP, 2013: 455-462.
    [21]
    SCUDDER H. Probability of error of some adaptive pattern-recognition machines[J]. IEEE Transactions on Information Theory, 1965, 11(3): 363-371. doi: 10.1109/TIT.1965.1053799
    [22]
    陈培文, 傅秀芬. 采用SVM方法的文本情感极性分类研究[J]. 广东工业大学学报, 2014, 31(3): 95-101. doi: 10.3969/j.issn.1007-7162.2014.03.017

    CHEN P W, FU X F. Research on sentiment classification of texts based on SVM[J]. Journal of Guangdong University of Technology, 2014, 31(3): 95-101(in Chinese). doi: 10.3969/j.issn.1007-7162.2014.03.017
    [23]
    张成功, 刘培玉, 朱振方, 等. 一种基于极性词典的情感分析方法[J]. 山东大学学报, 2012, 47(3): 47-50.

    ZHANG C G, LIU P Y, ZHU Z F, et al. A sentiment analysis method based on a polarity lexicon[J]. Journal of Shandong University, 2012, 47(3): 47-50(in Chinese).
  • Relative Articles

    [1]WEN Y F,ZHANG W Q,HAO S S. Investigation on unsteady flow characteristics of a supersonic inlet with exit blocked[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(3):772-783 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0142.
    [2]WEI H,CAI G B,FAN Y H,et al. Online guidance for hypersonic vehicles in glide-reentry segment[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(1):183-192 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0965.
    [3]YUAN Kaihua, ZHANG Zhuoge, ZHA Jun, CHENG Meng, JI Hongli, LIU Kai, TIAN Haitao. WIND TUNNEL TEST FOR AEROELASTIC DYNAMIC RESPONSE SUPRESSION OF SUPERSONIC PANEL[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0602
    [4]MAO Junjie, QU Guoxin, GAO Zhenxun. Numerical investigation of heat and drag reduction by discrete microholes film in hypersonic flow[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0443
    [5]HAN F Q,ZHANG D Y. Ultrasonic longitudinal torsional and low frequency torsional compound vibration tapping experiment[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(4):1077-1084 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0453.
    [6]YE Yi-qiao, SHEN Hai-dong, LIU Yan-bin, GAO Ze-peng, KONG Xiang, CHEN Jin-bao. Integrated design of hypersonic aircraft wing layout and mission trajectory[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0650
    [7]CHEN G,SUN X,LI G X,et al. Analysis and improvement of lateral instability of quasi-biconical lifting reentry spacecraft[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(9):2800-2809 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0708.
    [8]YANG B,LIU C F,YU H,et al. A method for analyzing angle measurement error of radar on hypersonic vehicle[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(12):3666-3676 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0879.
    [9]YANG F,LIN M Y,HU Z M,et al. Prediction method of aero-heating of hypersonic vehicle bi-curvature leading edge based on machine learning[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(9):2826-2834 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0746.
    [10]LIU Chen-yu, XIE Zhang-chuan. Supersonic flutter prediction based on unmatched substructure method[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0749
    [11]LI P,CHEN J Q,DING M S,et al. Simulaton of therochemical nonequilibrium and rarefied-slip flows for hypersonic flight vehicles[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(11):3391-3401 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0870.
    [12]GE Jian-hao, GUO Jie, WANG Hao-ning, ZHANG Bao-chao, WAN Yang-yang, TANG Sheng-jing. Adaptive model predictive control for hypersonic morphing gliding vehicle[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0081
    [13]ZHENG J K,TANG S J,GUO J. Closed-loop cooperative terminal guidance law based on predictor-corrector for hypersonic gliding vehicles[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(11):3188-3196 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0043.
    [14]XIAO T H,XU Y N,ZHU Z H,et al. Effect of engine nacelle layout on sonic boom of supersonic transport[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(9):2267-2278 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0687.
    [15]FAN B X,CHEN G M,CAO Y Q. Multi-objective optimization of aerodynamic layout for hypersonic reentry vehicle[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1639-1650 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0566.
    [16]DONG Q,CHENG S F,ZHANG X M,et al. Vibration response of asphalt concrete pavement under vehicle-road coupled load[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(9):2385-2394 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0654.
    [17]WANG W Z,ZHAO R,GUI Y T,et al. Stabilization effects of carbon foam surface on hypersonic boundary layers[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(10):2741-2749 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0703.
    [18]YANG Yuchen, ZHANG Zenghui, YAN Jianing, ZHANG Jing, YANG Lingyu. Dual-channel control of hypersonic flight vehicles based on bounded perturbation analysis of eigenvalues[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(10): 2020-2030. doi: 10.13700/j.bh.1001-5965.2021.0053
    [19]PENG Weishi. Evaluation of high hitting accuracy performance of hypersonic vehicle[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(11): 2130-2137. doi: 10.13700/j.bh.1001-5965.2021.0094
    [20]ZHANG Yuan, HUANG Wanwei, LU Kunfeng, BAI Wenyan, YU Jianglong. Modeling and finite-time control for hypersonic morphing flight vehicle[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(10): 1979-1993. doi: 10.13700/j.bh.1001-5965.2021.0701
  • Cited by

    Periodical cited type(1)

    1. 王建鹏,郭彤,陈亮,姜文杰,孙晓晨. 基于多目标遗传算法的固定蜂窝板辐射器性能优化. 航天器工程. 2024(04): 34-43 .

    Other cited types(0)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(5)

    Article Metrics

    Article views(436) PDF downloads(334) Cited by(1)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return