Volume 48 Issue 1
Jan.  2022
Turn off MathJax
Article Contents
BEI Yue, WANG Qi, CHENG Zhipeng, et al. HDR image generation method based on conditional generative adversarial network[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(1): 45-52. doi: 10.13700/j.bh.1001-5965.2020.0518(in Chinese)
Citation: BEI Yue, WANG Qi, CHENG Zhipeng, et al. HDR image generation method based on conditional generative adversarial network[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(1): 45-52. doi: 10.13700/j.bh.1001-5965.2020.0518(in Chinese)

HDR image generation method based on conditional generative adversarial network

doi: 10.13700/j.bh.1001-5965.2020.0518
Funds:

Zhejiang Provincial Natural Science Foundation of China LY20F010013

More Information
  • Corresponding author: DING Dandan, E-mail: DandanDing@hznu.edu.cn
  • Received Date: 14 Sep 2020
  • Accepted Date: 23 Apr 2021
  • Publish Date: 20 Jan 2022
  • Compared with low dynamic range (LDR) images, high dynamic range (HDR) images have a wider color gamut and higher brightness range, which is more in line with human visual effects. However, since most of the current image acquisition devices are LDR devices, HDR image resources are scarce. An effective way to solve this problem is to map LDR images to HDR images through inverse tone mapping. This paper proposes an inverse tone mapping algorithm based on conditional generative adversarial network (CGAN) to reconstruct HDR images. To this end, a multi-branch-based generation network and a discrimination network based on discrimination blocks are designed, and the data generation and feature extraction capabilities of CGAN are used to map a single LDR image from the BT.709 color gamut to the corresponding BT.2020 color area. The experimental results show that the proposed network can obtain higher objective and subjective quality compared with the existing methods. Especially for fuzzy areas in the low color gamut, the proposed method can reconstruct clearer textures and details.

     

  • loading
  • [1]
    马正先. HDR技术及其在4K超高清电视上的应用[J]. 电视技术, 2019, 43(1): 33-39. doi: 10.3969/j.issn.2096-0751.2019.01.010

    MA Z X. HDR technology and application on 4K ultra-high-definition TV[J]. Television Technology, 2019, 43(1): 33-39(in Chinese). doi: 10.3969/j.issn.2096-0751.2019.01.010
    [2]
    ENDO Y, KANAMORI Y, MITANI J. Deep reverse tone mapping[J]. ACM Transactions on Graphics, 2017, 36(6): 177: 1-177: 10.
    [3]
    EILERTSEN G, KRONANDER J, DENES G, et al. HDR image reconstruction from a single exposure using deep CNNs[J]. ACM Transactions on Graphics, 2017, 36(6): 1-15. http://www.repository.cam.ac.uk/bitstream/1810/277485/3/paper-opt.pdf
    [4]
    XU Y C, SONG L, XIE R, et al. Deep video inverse tone mapping[C]//2019 IEEE Fifth International Conference on Multimedia Big Data (BigMM). Piscataway: IEEE Press, 2019: 142-147.
    [5]
    MARNERIDES D, BASHFORD-ROGERS T, HATCHETT J, et al. ExpandNet: A deep convolutional neural network for high dynamic range expansion from low dynamic range content[J]. Computer Graphics, 2018, 37(2): 37-49.
    [6]
    KINOSHITA Y, KIYA H. iTM-Net: Deep inverse tone mapping using novel loss function considering tone mapping operator[J]. IEEE Access, 2019, 7: 73555-73563. doi: 10.1109/ACCESS.2019.2919296
    [7]
    LEE S, AN G H, KANG S J. Deep chain HDRI: Reconstructing a high dynamic range image from a single low dynamic range image[J]. IEEE Access, 2018, 6: 49913-49924. doi: 10.1109/ACCESS.2018.2868246
    [8]
    XU Y C, NING S Y, XIE R, et al. GAN based multi-exposure inverse tone mapping[C]//2019 IEEE International Conference on Image Processing (ICIP). Piscataway: IEEE Press, 2019: 1-5.
    [9]
    NING S Y, XU H T, SONG L, et al. Learning an inverse tone mapping network with a generative adversarial regularizer[C]//2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Piscataway: IEEE Press, 2018: 1383-1387.
    [10]
    LEE S, AN G H, KANG S J. Deep recursive HDRI: Inverse tone mapping using generative adversarial networks[C]//Proceedings of the European Conference on Computer Vision (ECCV). Berlin: Springer, 2018: 596-611.
    [11]
    RONNEBERGER O, FISCHER P, BROX T. U-Net: Convolutional networks for biomedical image segmentation[C]//International Conference on Medical image Computing and Computer-Assisted Intervention. Berlin: Springer, 2015: 234-241.
    [12]
    TAKEUCHI M, SAKAMOTO Y, YOKOYAMA R, et al. A gamut-extension method considering color information restoration using convolutional neural networks[C]//2019 IEEE International Conference on Image Processing (ICIP). Piscataway: IEEE Press, 2019: 774-778.
    [13]
    LEDIG C, THEIS L, HUSZÁR F, et al. Photo-realistic single image super-resolution using a generative adversarial network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2017: 4681-4690.
    [14]
    WANG X T, KE Y, WU S X, et al. EsrGAN: Enhanced super-resolution generative adversarial networks[C]//Proceedings of the European Conference on Computer Vision (ECCV). Berlin: Springer, 2018: 63-79.
    [15]
    ISOLA P, ZHU J Y, ZHOU T, et al. Image-to-image translation with conditional adversarial networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2017: 1125-1134.
    [16]
    ZHU J Y, PARK T, ISOLA P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[C]//Proceedings of the IEEE International Conference on Computer Vision. Piscataway: IEEE Press, 2017: 2223-2232.
    [17]
    SIAROHIN A, SANGINETO E, LATHUILIōRE S, et al. Deformable GANs for pose-based human image generation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2018: 3408-3416.
    [18]
    CHAN C, GINOSAR S, ZHOU T H, et al. Everybody dance now[C]//Proceedings of the IEEE International Conference on Computer Vision. Piscataway: IEEE Press, 2019: 5933-5942.
    [19]
    GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]//Advances in Neural Information Processing Systems, 2014: 2672-2680.
    [20]
    RATLIFF L J, BURDEN S A, SASTRY S S. Characterization and computation of local Nash equilibria in continuous games[C]//2013 51st Annual Allerton Conference on Communication, Control, and Computing. Piscataway: IEEE Press, 2013: 917-924.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(2)

    Article Metrics

    Article views(387) PDF downloads(61) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return