WU Yunjie, WANG Jianmin, YANG Wenguanget al. Approach of credibility evaluation for testing system with small samples[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(9): 1911-1917. doi: 10.13700/j.bh.1001-5965.2015.0559(in Chinese)
Citation: BEI Yue, WANG Qi, CHENG Zhipeng, et al. HDR image generation method based on conditional generative adversarial network[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(1): 45-52. doi: 10.13700/j.bh.1001-5965.2020.0518(in Chinese)

HDR image generation method based on conditional generative adversarial network

doi: 10.13700/j.bh.1001-5965.2020.0518
Funds:

Zhejiang Provincial Natural Science Foundation of China LY20F010013

More Information
  • Corresponding author: DING Dandan, E-mail: DandanDing@hznu.edu.cn
  • Received Date: 14 Sep 2020
  • Accepted Date: 23 Apr 2021
  • Publish Date: 20 Jan 2022
  • Compared with low dynamic range (LDR) images, high dynamic range (HDR) images have a wider color gamut and higher brightness range, which is more in line with human visual effects. However, since most of the current image acquisition devices are LDR devices, HDR image resources are scarce. An effective way to solve this problem is to map LDR images to HDR images through inverse tone mapping. This paper proposes an inverse tone mapping algorithm based on conditional generative adversarial network (CGAN) to reconstruct HDR images. To this end, a multi-branch-based generation network and a discrimination network based on discrimination blocks are designed, and the data generation and feature extraction capabilities of CGAN are used to map a single LDR image from the BT.709 color gamut to the corresponding BT.2020 color area. The experimental results show that the proposed network can obtain higher objective and subjective quality compared with the existing methods. Especially for fuzzy areas in the low color gamut, the proposed method can reconstruct clearer textures and details.

     

  • [1]
    马正先. HDR技术及其在4K超高清电视上的应用[J]. 电视技术, 2019, 43(1): 33-39. doi: 10.3969/j.issn.2096-0751.2019.01.010

    MA Z X. HDR technology and application on 4K ultra-high-definition TV[J]. Television Technology, 2019, 43(1): 33-39(in Chinese). doi: 10.3969/j.issn.2096-0751.2019.01.010
    [2]
    ENDO Y, KANAMORI Y, MITANI J. Deep reverse tone mapping[J]. ACM Transactions on Graphics, 2017, 36(6): 177: 1-177: 10.
    [3]
    EILERTSEN G, KRONANDER J, DENES G, et al. HDR image reconstruction from a single exposure using deep CNNs[J]. ACM Transactions on Graphics, 2017, 36(6): 1-15.
    [4]
    XU Y C, SONG L, XIE R, et al. Deep video inverse tone mapping[C]//2019 IEEE Fifth International Conference on Multimedia Big Data (BigMM). Piscataway: IEEE Press, 2019: 142-147.
    [5]
    MARNERIDES D, BASHFORD-ROGERS T, HATCHETT J, et al. ExpandNet: A deep convolutional neural network for high dynamic range expansion from low dynamic range content[J]. Computer Graphics, 2018, 37(2): 37-49.
    [6]
    KINOSHITA Y, KIYA H. iTM-Net: Deep inverse tone mapping using novel loss function considering tone mapping operator[J]. IEEE Access, 2019, 7: 73555-73563. doi: 10.1109/ACCESS.2019.2919296
    [7]
    LEE S, AN G H, KANG S J. Deep chain HDRI: Reconstructing a high dynamic range image from a single low dynamic range image[J]. IEEE Access, 2018, 6: 49913-49924. doi: 10.1109/ACCESS.2018.2868246
    [8]
    XU Y C, NING S Y, XIE R, et al. GAN based multi-exposure inverse tone mapping[C]//2019 IEEE International Conference on Image Processing (ICIP). Piscataway: IEEE Press, 2019: 1-5.
    [9]
    NING S Y, XU H T, SONG L, et al. Learning an inverse tone mapping network with a generative adversarial regularizer[C]//2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Piscataway: IEEE Press, 2018: 1383-1387.
    [10]
    LEE S, AN G H, KANG S J. Deep recursive HDRI: Inverse tone mapping using generative adversarial networks[C]//Proceedings of the European Conference on Computer Vision (ECCV). Berlin: Springer, 2018: 596-611.
    [11]
    RONNEBERGER O, FISCHER P, BROX T. U-Net: Convolutional networks for biomedical image segmentation[C]//International Conference on Medical image Computing and Computer-Assisted Intervention. Berlin: Springer, 2015: 234-241.
    [12]
    TAKEUCHI M, SAKAMOTO Y, YOKOYAMA R, et al. A gamut-extension method considering color information restoration using convolutional neural networks[C]//2019 IEEE International Conference on Image Processing (ICIP). Piscataway: IEEE Press, 2019: 774-778.
    [13]
    LEDIG C, THEIS L, HUSZÁR F, et al. Photo-realistic single image super-resolution using a generative adversarial network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2017: 4681-4690.
    [14]
    WANG X T, KE Y, WU S X, et al. EsrGAN: Enhanced super-resolution generative adversarial networks[C]//Proceedings of the European Conference on Computer Vision (ECCV). Berlin: Springer, 2018: 63-79.
    [15]
    ISOLA P, ZHU J Y, ZHOU T, et al. Image-to-image translation with conditional adversarial networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2017: 1125-1134.
    [16]
    ZHU J Y, PARK T, ISOLA P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[C]//Proceedings of the IEEE International Conference on Computer Vision. Piscataway: IEEE Press, 2017: 2223-2232.
    [17]
    SIAROHIN A, SANGINETO E, LATHUILIōRE S, et al. Deformable GANs for pose-based human image generation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2018: 3408-3416.
    [18]
    CHAN C, GINOSAR S, ZHOU T H, et al. Everybody dance now[C]//Proceedings of the IEEE International Conference on Computer Vision. Piscataway: IEEE Press, 2019: 5933-5942.
    [19]
    GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]//Advances in Neural Information Processing Systems, 2014: 2672-2680.
    [20]
    RATLIFF L J, BURDEN S A, SASTRY S S. Characterization and computation of local Nash equilibria in continuous games[C]//2013 51st Annual Allerton Conference on Communication, Control, and Computing. Piscataway: IEEE Press, 2013: 917-924.
  • Relative Articles

    [1]LI Huan, CUI Pengcheng, JIA Hongyin, GONG Xiaoquan, WU Xiaojun. Numerical Simulation of TSTO Interstage Separation Considering Constraint Force[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0839
    [2]YIN J B,XING Y M,WANG S S,et al. Study of performance of topological fin for phase change energy storage[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(10):3274-3282 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0803.
    [3]ZHOU Y J,WAN Q,XU Y Z,et al. Redundancy design of a FADS system on a complex leading-edge vehicle using neural network approach[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(3):757-764 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0341.
    [4]LI C Q,ZHAN Y Q,WANG Z M,et al. Numerical simulation of iliac vein compression syndrome in hemodynamics[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2646-2654 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0693.
    [5]LEI J M,WU Z X,XIE W Y. Numerical simulation investigation on water surface skipping motion characteristics of sea-skimming projectile[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(10):2975-2983 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0813.
    [6]CHEN B,LUO L,JIANG A L,et al. Numerical simulation of separation characteristics for internally buried weapon at high Mach number[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(7):2113-2122 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0627.
    [7]MAO Junjie, QU Guoxin, GAO Zhenxun. Numerical investigation of heat and drag reduction by discrete microholes film in hypersonic flow[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0443
    [8]ZHANG P H,CHEN H Y,ZHANG J,et al. Passive flow control for weapon bay at high Mach number[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(11):2913-2920 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0790.
    [9]GAO J C,CHEN W J,HU W J,et al. Analysis of CO2 distribution characteristics in cabin of civil aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(9):2510-2517 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0683.
    [10]ZHANG P H,CHENG X H,CHEN H Y,et al. Unsteady flow mechanism of high Mach number cavity[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(8):1940-1947 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0609.
    [11]HE Z P,ZHOU J X,XIN J,et al. Unsteady flow characteristics of turbine rotor passage under rim seal effect[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(2):273-283 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0223.
    [12]ZHANG Pei-hong, JIA Hong-yin, ZHAO Jiao, WU Xiao-jun, ZHOU Gui-yu, ZHANG Yao-bing. Numerical simulation research on opposing jet interaction characteristics of rocket inverse flight[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0710
    [13]ZHANG P H,TANG Y,TANG J,et al. Simulation of cavity flow at high Mach number based on adaptive unstructured hybrid mesh[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(6):1311-1318 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0424.
    [14]HAN Y F,HU X S,GAO Y,et al. Comparison of turbulence models for unsteady flow simulation in a long and narrow cabin[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(4):957-964 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0335.
    [15]PENG L,LI L,ZHAO W. Numerical study on coupled heat transfer of rotating disc in centrifugal atomization[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(12):3456-3466 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0152.
    [16]XIE N,TANG Y M,ZHANG Y,et al. Numerical study of blood pump weaning effects on hemocompatibility of centrifugal blood pump[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1680-1688 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0494.
    [17]ZHANG Chao, LIU Jianchun, FANG Xin. Damage analysis in composite laminates under low velocity oblique impact[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(12): 2388-2397. doi: 10.13700/j.bh.1001-5965.2021.0154
    [18]WANG Weiqi, XING Yuming, ZHENG Wenyuan, HAO Zhaolong. Phase change heat transfer characteristics and fractal optimization of radial plate fin tube[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(12): 2520-2528. doi: 10.13700/j.bh.1001-5965.2021.0140
    [19]GUO Qi, SHEN Xiaobin, LIN Guiping, ZHANG Shijuan. Numerical simulation of icing on aircraft rotating surfaces[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(11): 2259-2269. doi: 10.13700/j.bh.1001-5965.2021.0081
    [20]WENG Huiyan, CAI Guobiao, ZHENG Hongru, LIU Lihui, ZHANG Baiyi, HE Bijiao. Numerical simulation of effect of background pressure on electric propulsion plume field[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(10): 1854-1862. doi: 10.13700/j.bh.1001-5965.2021.0039
  • Cited by

    Periodical cited type(0)

    Other cited types(1)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(2)

    Article Metrics

    Article views(468) PDF downloads(63) Cited by(1)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return