Citation: | YANG Hui, LU Wenrui, LI Hongyang, et al. Hypersonic air inlet performance based on engineering transition model[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(7): 1408-1418. doi: 10.13700/j.bh.1001-5965.2017.0516(in Chinese) |
In order to study the variation of the performance parameters of a hypersonic air inlet with the flight height, free stream turbulence intensity and free stream Mach number, and the influence of the boundary layer transition on the compression surface on air inlet performance, a series of numerical simulations were conducted by using the
[1] |
黄伟, 罗世彬, 王振国.临近空间高超声速飞行器关键技术及展望[J].宇航学报, 2010, 31(5):1259-1265.
HUANG W, LUO S B, WANG Z G.Key techniques and prospect of near-space hypersonic vehicle[J].Journal of Astronautics, 2010, 31(5):1259-1265(in Chinese).
|
[2] |
李祝飞. 高超声速进气道起动特性机理研究[D]. 合肥: 中国科学技术大学, 2013: 1.
LI Z F. An investigation on starting characteristics of hypersonic inlets[D]. Hefei: University of Science and Technology of China, 2013: 1(in Chinese).
|
[3] |
张玉伦, 王光学, 孟德虹, 等.γ-Reθ转捩模型的标定研究[J].空气动力学学报, 2011, 29(3):295-301.
ZHANG Y L, WANG G X, MENG D H, et al.Calibration of γ-Reθ transition model[J].Acta Aerodynamica Sinica, 2011, 29(3):295-301(in Chinese).
|
[4] |
许丁, 马晖扬.高超声速边界层工程转捩模式研究[J].中国科学院研究生院学报, 2009, 26(1):43-49.
XU D, MA H Y.Engineering transition models for hypersonic boundary layer[J].Journal of the Graduate School of the Chinese Academy of Sciences, 2009, 26(1):43-49(in Chinese).
|
[5] |
MENTER F R, LANGTRY R B, LIKKI S R, et al.A correlation-based transition model using local variables:Part Ⅰ:Model formulation[J].Journal of Turbomachinery, 2006, 128(3):57-67.
|
[6] |
LANGTRY R B, MENTER F R, LIKKI S R, et al. A correlation-based transition model using local variables: Part Ⅱ: Test cases and industrial applications: GT-2004-53454[C]//ASME Turbo Expo 2004: Power for Land, Sea, and Air. New York: ASME, 2004, 4: 69-79.
|
[7] |
MALAN P, SULUKSNA K, JUNTASARO E. Calibrating the γ-Reθ transition model for commercial CFD[C]//47th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Aerospace Sciences Meetings. Reston: AIAA, 2009.
|
[8] |
陈奕, 高正红.γ-Reθ转捩模型在绕翼型流动问题中的应用[J].空气动力学学报, 2009, 27(4):411-418.
CHEN Y, GAO Z H.Application of γ-Reθ transition model to flows around airfoils[J].Acta Aerodynamica Sinica, 2009, 27(4):411-418(in Chinese).
|
[9] |
钟伟, 王同光.转捩对风力机翼型和叶片失速特性影响的数值模拟[J].空气动力学学报, 2011, 29(3):385-390.
ZHONG W, WANG T G.Numerical analysis of transition effect on stall performance of wind turbine airfoils and blades[J].Acta Aerodynamica Sinica, 2011, 29(3):385-390(in Chinese).
|
[10] |
郑赟, 李虹杨, 刘大响.γ-Reθ转捩模型在高超声速下的应用及分析[J].推进技术, 2014, 35(3):296-304.
ZHENG Y, LI H Y, LIU D X.Application and analysis of γ-Reθ transition model in hypersonic flow[J].Journal of Propulsion Technology, 2014, 35(3):296-304(in Chinese).
|
[11] |
孔维萱, 阎超, 赵瑞.γ-Reθ模式应用于高速边界层转捩的研究[J].空气动力学学报, 2013, 31(1):120-126.
KONG W X, YAN C, ZHAO R.γ-Reθ model research for high-speed boundary layer transition[J].Acta Aerodynamica Sinica, 2013, 31(1):120-126(in Chinese).
|
[12] |
BENSASSI K, LANI A, RAMBAUD P. Numerical investigations of local correlation-based transition model in hypersonic flows: AIAA-2012-3151[R]. Reston: AIAA, 2012.
|
[13] |
CHENG G, NICHOLS R, NEROORKAR K, et al. Validation and assessment of turbulence transition models: AIAA-2009-1141[R]. Reston: AIAA, 2009.
|
[14] |
张毅锋, 雷净, 张益荣, 等.高超声速数值模拟平台转捩模型的标定[J].空气动力学学报, 2015, 33(1):42-47.
ZHANG Y F, LEI J, ZHANG Y R, et al.Calibration of transition model for hypersonic numerical simulation platform[J].Acta Aerodynamica Sinica, 2015, 33(1):42-47(in Chinese).
|
[15] |
张毅锋, 何琨, 张益荣, 等.Menter转捩模型在高超声速流动模拟中的改进及验证[J].宇航学报, 2016, 37(4):397-402.
ZHANG Y F, HE K, ZHANG Y R, et al.Improvement and validation of menter's transition model for hypersonic flow simulation[J].Journal of Astronautics, 2016, 37(4):397-402(in Chinese).
|
[16] |
ZHANG X D, GAO Z H.A numerical research on a compressibility-correlated langtry's transition model for double wedge boundary layer flows[J].Chinese Journal of Aeronautics, 2011, 24(3):249-257. doi: 10.1016/S1000-9361(11)60030-7
|
[17] |
YOU Y C, LUEDEKE H, EGGERS T, et al. Application of the γ-Reθ transition model in high speed flows[C]//18th AIAA/3AF International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2012.
|
[18] |
夏陈超, 姜婷婷, 郭中州, 等.压缩性修正对γ-Reθ转捩模型的影响研究[J].空气动力学学报, 2015, 33(5):603-609.
XIA C C, JIANG T T, GUO Z Z, et al.Effects of compressibility correction on γ-Reθ transition model[J].Acta Aerodynamica Sinica, 2015, 33(5):603-609(in Chinese).
|
[19] |
郑赟, 李虹杨.基于新的经验关联公式的γ-Reθ转捩模型在高超声速流动中的应用[J].推进技术, 2015, 36(6):839-845.
ZHENG Y, LI H Y.Application of γ-Reθ transition model in hypersonic flow based on new correlation equation[J].Journal of Propulsion Technology, 2015, 36(6):839-845(in Chinese).
|
[20] |
DENISSEN N A, YODER D A, GEORGIADIS N J. Implementation and validation of a laminar-to-turbulent transition model in the wind-us code: NASA/TM-2008-215451[R]. Washington, D. C. : NASA, 2008: 27.
|
[21] |
RESHOTKO E.Is retheta/me a meaningful transition criterion [J].AIAA Journal, 2007, 45(7):1441-1443. doi: 10.2514/1.29952
|
[22] |
LANGTRY R B, MENTER F R.Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes[J].AIAA Journal, 2009, 47(12):2894-2906. doi: 10.2514/1.42362
|
[23] |
李虹杨, 郑赟.尾迹对涡轮叶栅边界层转捩的影响[J].推进技术, 2017, 38(3):532-538.
LI H Y, ZHENG Y.Effect of wake on boundary layer transition of turbine cascade[J].Journal of Propulsion Technology, 2017, 38(3):532-538(in Chinese).
|
[24] |
LI H Y, ZHENG Y. Effect of surface roughness on conjugate heat transfer of a turbine vane: GT-2016-56744[C]//ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition. New York: ASME, 2016: V05AT13A012.
|
[25] |
NEUENHAHN T, OLIVIER H. Influence of the wall temperature and the entropy layer effects on double wedge shock boundary layer interactions[C]//14th AIAA/AHI Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2006.
|
[26] |
REINARTZ B, BALLMANN J. Computation of hypersonic double wedge shock/boundary layer interaction[C]//26th International Symposium on Shock Waves. Berlin: Springer, 2008: 1099-1104.
|
[1] | WEI H,CAI G B,FAN Y H,et al. Online guidance for hypersonic vehicles in glide-reentry segment[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(1):183-192 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0965. |
[2] | WEN Y F,ZHANG W Q,HAO S S. Investigation on unsteady flow characteristics of a supersonic inlet with exit blocked[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(3):772-783 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0142. |
[3] | ZHANG P H,ZHOU G Y,SHEN Y Y,et al. Simulation of parallel separation characteristics using NNW-FlowStar software[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(5):1620-1628 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0275. |
[4] | CHEN Jinghang, TIAN Yuyan, GAO Zhenxun. Numerical Investigation of compressibility corrections for turbulent mixing layer[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2025.0058 |
[5] | ZOU L,WU W N,LIU J,et al. Numerical simulation of flow around two tandem wavy conical cylinders at subcritical Reynolds number[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(3):706-715 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0285. |
[6] | LI C Q,ZHAN Y Q,WANG Z M,et al. Numerical simulation of iliac vein compression syndrome in hemodynamics[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2646-2654 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0693. |
[7] | LEI J M,WU Z X,XIE W Y. Numerical simulation investigation on water surface skipping motion characteristics of sea-skimming projectile[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(10):2975-2983 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0813. |
[8] | MAO Junjie, QU Guoxin, GAO Zhenxun. Numerical investigation of heat and drag reduction by discrete microholes film in hypersonic flow[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0443 |
[9] | CHEN B,LUO L,JIANG A L,et al. Numerical simulation of separation characteristics for internally buried weapon at high Mach number[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(7):2113-2122 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0627. |
[10] | GE Jian-hao, GUO Jie, WANG Hao-ning, ZHANG Bao-chao, WAN Yang-yang, TANG Sheng-jing. Adaptive model predictive control for hypersonic morphing gliding vehicle[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0081 |
[11] | LEI Juan-mian, ZHU Pei-yu. Numerical Study on Lateral Jet Control Efficiency of Hypersonic Reentry Double-cone Vehicle[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0714 |
[12] | ZHANG P H,CHENG X H,CHEN H Y,et al. Unsteady flow mechanism of high Mach number cavity[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(8):1940-1947 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0609. |
[13] | ZHENG J K,TANG S J,GUO J. Closed-loop cooperative terminal guidance law based on predictor-corrector for hypersonic gliding vehicles[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(11):3188-3196 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0043. |
[14] | ZHANG P H,TANG Y,TANG J,et al. Simulation of cavity flow at high Mach number based on adaptive unstructured hybrid mesh[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(6):1311-1318 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0424. |
[15] | HAN Y F,HU X S,GAO Y,et al. Comparison of turbulence models for unsteady flow simulation in a long and narrow cabin[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(4):957-964 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0335. |
[16] | ZHANG P H,CHEN H Y,ZHANG J,et al. Passive flow control for weapon bay at high Mach number[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(11):2913-2920 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0790. |
[17] | WENG Huiyan, CAI Guobiao, ZHENG Hongru, LIU Lihui, ZHANG Baiyi, HE Bijiao. Numerical simulation of effect of background pressure on electric propulsion plume field[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(10): 1854-1862. doi: 10.13700/j.bh.1001-5965.2021.0039 |
[18] | PENG Weishi. Evaluation of high hitting accuracy performance of hypersonic vehicle[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(11): 2130-2137. doi: 10.13700/j.bh.1001-5965.2021.0094 |
[19] | YANG Yuchen, ZHANG Zenghui, YAN Jianing, ZHANG Jing, YANG Lingyu. Dual-channel control of hypersonic flight vehicles based on bounded perturbation analysis of eigenvalues[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(10): 2020-2030. doi: 10.13700/j.bh.1001-5965.2021.0053 |
[20] | ZHANG Yuan, HUANG Wanwei, LU Kunfeng, BAI Wenyan, YU Jianglong. Modeling and finite-time control for hypersonic morphing flight vehicle[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(10): 1979-1993. doi: 10.13700/j.bh.1001-5965.2021.0701 |
1. | 谢春晖,王东方,郑世超. 基于WCNS高精度软件平台的γ-Re_θ转捩模型超高速流动应用研究. 空气动力学学报. 2024(12): 25-34 . ![]() | |
2. | 杜磊,孙波,代春良,卓长飞. 壁面温度对斜爆震发动机进气道流动特性影响的数值研究. 推进技术. 2021(04): 950-960 . ![]() |