Lu Zixing, Xie Ruoze, Tian Changjin, et al. Investigation into Shear Mechanical Properties of PUR Foamed Plastics[J]. Journal of Beijing University of Aeronautics and Astronautics, 1999, 25(5): 561-564. (in Chinese)
Citation: Lu Zixing, Zhang Jialei. Numerical simulation on compressive yielding behavior of closed-cell metal foam with low density[J]. Journal of Beijing University of Aeronautics and Astronautics, 2009, 35(3): 318-321. (in Chinese)

Numerical simulation on compressive yielding behavior of closed-cell metal foam with low density

  • Received Date: 01 Apr 2008
  • Publish Date: 31 Mar 2009
  • It is an important means to simulate the deformation process of metal foam with low density numerically for investigating their mechanical behavior and failure. Based on the geometric model of Kelvin containing multiple cells, the finite element method was used to obtain the compressive yield strengths and to simulate the deformation curves of closed-cell metal foams. The deformation processes of the Kelvin foam models were simulated at the same time. During the calculation, the material properties of nonlinearity and geometric nonlinearity were taken into account,also, the influences of the number of cells on the foam properties were discussed. In order to investigate their influences on the mechanical behaviors of foams, the two constitute relations, perfect elastic-plastic relation and linearly hardening elastic-plastic relation, were adopted. The results show that the calculated values agree well with the theoretical results ever reported by other researchers, but the values are higher than the former experimental results.

     

  • [1] 卢子兴,石上路.低密度开孔泡沫材料力学模型的理论研究进展[J].力学与实践,2005,27(5):13-20 Lu Zixing, Shi Shanglu. Theoretical studies on mechanical models of low density foam[J]. Mechanics in Engineering, 2005,27(5):13-20(in Chinese) [2] 石上路,卢子兴.基于十四面体模型的开孔泡沫材料弹性模量的有限元分析[J].机械强度, 2006, 28(1):108-112 Shi Shanglu, Lu Zixing. Finite element analysis for the elastic modulus of open-cell foams based on a tetrakaidecahedron model[J]. Journal of Mechanical Strength, 2006, 28(1):108-112(in Chinese) [3] 张家雷,卢子兴.基于十四面体模型的闭孔泡沫材料弹性性能的有限元分析[J].机械强度, 2007, 29(2):315-319 Zhang Jialei, Lu Zixing. Finite element analysis for the elastic properties of closed-cell foams based on a tetrakaidecahedron model[J]. Journal of Mechanical Strength, 2007, 29(2):315-319(in Chinese) [4] Simone A E, Gibson L J. Effects of solid distribution on the stiffness and strength of metallic foams[J]. Acta Mater, 1998, 46(6): 2139-2150 [5] Grenestedt J L, Bassinet F. Influence of cell wall thickness variations on elastic stiffness of closed-cell cellular solids[J]. Int J Mech Sci, 2000, 42:1327-1338 [6] Mills N J, Zhu H X. The high strain compression of closed-cell polymer foams[J]. J Mech Phys Solids,1999,47:669-695 [7] Andrews E, Sanders W, Gibson L J. Compressive and tensile behavior of aluminum foams[J]. Mater Sci Eng, 1999,A270:113-124 [8] Santosa S, Wierzbicki T.On the modeling of crush behavior of a closed-cell aluminum foam structure[J]. J Mech Phys Solids,1998,46(4):645-669 [9] Gibson L J, Ashby M F. Cellular solids: structure and properties[M]. Second ed. UK, Cambridge: Cambridge University Press,1997
  • Relative Articles

    [1]LI Huan, CUI Pengcheng, JIA Hongyin, GONG Xiaoquan, WU Xiaojun. Numerical Simulation of TSTO Interstage Separation Considering Constraint Force[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0839
    [2]YIN J B,XING Y M,WANG S S,et al. Study of performance of topological fin for phase change energy storage[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(10):3274-3282 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0803.
    [3]ZHOU Y J,WAN Q,XU Y Z,et al. Redundancy design of a FADS system on a complex leading-edge vehicle using neural network approach[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(3):757-764 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0341.
    [4]CUI H G,YAN X Y,GAO Y F,et al. Efficient prediction method for Kelvin-Helmholtz instability growth on transcritical droplet surface in composite coordinate system[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(9):2835-2842 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0701.
    [5]LI C Q,ZHAN Y Q,WANG Z M,et al. Numerical simulation of iliac vein compression syndrome in hemodynamics[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2646-2654 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0693.
    [6]LEI J M,WU Z X,XIE W Y. Numerical simulation investigation on water surface skipping motion characteristics of sea-skimming projectile[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(10):2975-2983 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0813.
    [7]CHEN B,LUO L,JIANG A L,et al. Numerical simulation of separation characteristics for internally buried weapon at high Mach number[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(7):2113-2122 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0627.
    [8]ZHANG P H,CHEN H Y,ZHANG J,et al. Passive flow control for weapon bay at high Mach number[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(11):2913-2920 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0790.
    [9]GAO J C,CHEN W J,HU W J,et al. Analysis of CO2 distribution characteristics in cabin of civil aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(9):2510-2517 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0683.
    [10]ZHANG P H,CHENG X H,CHEN H Y,et al. Unsteady flow mechanism of high Mach number cavity[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(8):1940-1947 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0609.
    [11]HE Z P,ZHOU J X,XIN J,et al. Unsteady flow characteristics of turbine rotor passage under rim seal effect[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(2):273-283 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0223.
    [12]ZHANG Pei-hong, JIA Hong-yin, ZHAO Jiao, WU Xiao-jun, ZHOU Gui-yu, ZHANG Yao-bing. Numerical simulation research on opposing jet interaction characteristics of rocket inverse flight[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0710
    [13]XIE N,TANG Y M,ZHANG Y,et al. Numerical study of blood pump weaning effects on hemocompatibility of centrifugal blood pump[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1680-1688 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0494.
    [14]ZHANG P H,TANG Y,TANG J,et al. Simulation of cavity flow at high Mach number based on adaptive unstructured hybrid mesh[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(6):1311-1318 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0424.
    [15]PENG L,LI L,ZHAO W. Numerical study on coupled heat transfer of rotating disc in centrifugal atomization[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(12):3456-3466 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0152.
    [16]HAN Y F,HU X S,GAO Y,et al. Comparison of turbulence models for unsteady flow simulation in a long and narrow cabin[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(4):957-964 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0335.
    [17]ZHANG Chao, LIU Jianchun, FANG Xin. Damage analysis in composite laminates under low velocity oblique impact[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(12): 2388-2397. doi: 10.13700/j.bh.1001-5965.2021.0154
    [18]WANG Weiqi, XING Yuming, ZHENG Wenyuan, HAO Zhaolong. Phase change heat transfer characteristics and fractal optimization of radial plate fin tube[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(12): 2520-2528. doi: 10.13700/j.bh.1001-5965.2021.0140
    [19]GUO Qi, SHEN Xiaobin, LIN Guiping, ZHANG Shijuan. Numerical simulation of icing on aircraft rotating surfaces[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(11): 2259-2269. doi: 10.13700/j.bh.1001-5965.2021.0081
    [20]WENG Huiyan, CAI Guobiao, ZHENG Hongru, LIU Lihui, ZHANG Baiyi, HE Bijiao. Numerical simulation of effect of background pressure on electric propulsion plume field[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(10): 1854-1862. doi: 10.13700/j.bh.1001-5965.2021.0039
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views(3030) PDF downloads(1166) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return