SVM fault diagnosis of autopilot based on quantum inspired gravitational search algorithm
-
摘要: 针对自动驾驶仪在实际测试过程中故障样本较少的情况,提出一种基于量子万有引力搜索算法(QGSA)的支持向量机(SVM)故障诊断模型。SVM能较好地解决小样本、非线性问题,适用于自动驾驶仪的故障诊断。为进一步提高万有引力搜索算法(GSA)对参数寻优的收敛速度和收敛精度,将基于GSA的QGSA应用于SVM的参数寻优中,以解决SVM由于参数选取不当导致过学习或欠学习的问题,从而获得最优的分类模型。通过模拟实验分析,当训练样本数量为50时,基于QGSA的SVM故障诊断模型分类准确率便能达到96.530 6%,而基于遗传算法(GA)的SVM故障诊断模型分类准确率为92.040 8%,基于GSA的SVM故障诊断模型分类准确率为91.632 7%。仿真实验结果表明,基于QGSA的SVM故障诊断模型具有更好的故障诊断能力。
-
关键词:
- 自动驾驶仪 /
- 量子万有引力搜索算法(QGSA) /
- 支持向量机(SVM) /
- 故障诊断 /
- 参数寻优
Abstract: With regard to the lack of the sample of faults in the test of autopilot, a model of fault diagnosis based on support vector machine (SVM) optimized by quantum inspired gravitational search algorithm is put forward. SVM does well in solving the few samples and nonlinear problem, which is suitable for the fault diagnosis of autopilot. To improve the convergence rate and accuracy of parameters optimizing based on gravitational search algorithm (GSA), quantum inspired gravitational search algorithm (QGSA) was applied to optimizing the parameters of SVM. SVM based on QGSA can solve the overfitting and underfitting resulted from the improper parameters. By this way, a model of fault diagnosis with better performance was built. The simulation experiment results show that the accuracy of SVM based on QGSA can achieve 96.530 6% using 50 training samples. However, the accuracy of genetic algorithm (GA)-SVM achieves 92.040 8% and the accuracy of SVM based on GSA achieves 91.632 7%. The simulation experiment results shows that SVM based on QGSA has much better performance than others. -
[1] 钟宇,白云,黄孝文.基于RBF神经网络的导弹自动驾驶仪故障诊断[J].现代防御技术,2011,39(2):54-59. ZHONG Y,BAI Y,HUANG X W. Fault diagnosis of missile autopilot based on RBF neural network[J].Modern Defence Technology,2011,39(2):54-59(in Chinese). [2] 刘东平,单甘霖,张岐龙,等.基于改进遗传算法的支持向量机参数优化[J].微计算机应用,2010,31(5):11-15. LIU D P,SHAN G L,ZHANG Q L, et al. Parameters optimization of support vector machine based on improved genetic algorithm[J].Microcomputer Applications,2010,31(5):11-15(in Chinese). [3] ALWAN H B,KU-MAHAMUD K R.Optimizing support vector machine parameters using continuous ant colony optimization[C]//20127th International Conference on Computing and Convergence Technology.Piscataway,NJ:IEEE Press,2012:164-169. [4] 宋晓华,杨尚东,刘达.基于蛙跳算法的改进支持向量机预测方法及应用[J].中南大学学报(自然科学版),2011,42(9):2737-2740. SONG X H,YANG S D,LIU D. Improved support vector machine forecasting model by shuffled frog leaping algoritmh and its application[J].Journal of Central South University (Science and Technology),2011,42(9):2737-2740(in Chinese). [5] 薛浩然,张珂珩,李斌,等.基于布谷鸟算法和支持向量机的变压器故障诊断[J].电力系统保护与控制,2015,43(8):8-13. XUE H R,ZHANG K H,LI B, et al. Fault diagnosis of transformer based on the cuckoo search and support vector machine[J].Power System Protection and Control,2015,43(8):8-13(in Chinese). [6] ZHANG W,NIU P,LI G,et al.Forecasting of turbine heat rate with online least squares support vector machine based on gravitational search algorithm[J].Knowledge-Based Systems,2013,39(2):34-44. [7] 戢钢,王景成,葛阳,等.城市小时级需水量的改进型引力搜索算法-最小二乘支持向量机模型预测[J].控制理论与应用,2014,31(10):1376-1382. JI G,WANG J C,GE Y,et al.Gravitational search algorithm-least squares support vector machine model forecasting on hourly urban water demand[J].Control Theory and Applications,2014,31(10):1376-1382(in Chinese). [8] SOLEIMANPOUR-MOGHADAM M,NEZAMABADI-POUR H,FARSANGI M M.A quantum inspired gravitational search algorithm for numerical function optimization[J].Information Sciences,2014,267(5):83-100. [9] RASHEDI E,NEZAMABADI-POUR H,SARYAZDI S.GSA:A gravitational search algorithm[J].Information Sciences,2009,179(13):2232-2248. [10] RASHEDI E,NEZAMABADI-POUR H,SARYAZDI S.BGSA:Binary gravitational search algorithm[J].Natural Computing,2010,9(3):727-745. [11] SOLEIMANPOUR-MOGHADAM M, NEZAMABADI-POUR H,FARSANGI M M.A quantum behaved gravitational search algorithm[J].Intelligent Information Management,2012,4(6):390-395. [12] CORTES C,VAPNIK V.Support-vector networks[J].Machine Learning,1995,20(3):273-297. [13] DONG S,LUO T.Bearing degradation process prediction based on the PCA and optimized LS-SVM model[J].Measurement,2013,46(9):3143-3152. [14] 张周锁,李凌均,何正嘉.基于支持向量机的机械故障诊断方法研究[J].西安交通大学学报,2002,36(12):1303-1306. ZHANG Z S,LI L J,HE Z J. Research on diagnosis method of machinery fault based on support vector machine[J].Journal of Xi'an Jiaotong University,2002,36(12):1303-1306(in Chinese). [15] 李琼,陈利.一种改进的支持向量机文本分类方法[J].计算机技术与发展,2015,25(5):78-82. LI Q, CHEN L.An improved support vector machine text classification method[J].Computer Technology and Development,2015,25(5):78-82(in Chinese). [16] 庄严,白振林,许云峰.基于蚁群算法的支持向量机参数选择方法研究[J].计算机仿真,2011,28(5):216-219. ZHUANG Y,BAI Z L,XU Y F. Research on parameters of support vector machine based on ant colony algorithm[J].Computer Simulation,2011,28(5):216-219(in Chinese).
点击查看大图
计量
- 文章访问数: 942
- HTML全文浏览量: 196
- PDF下载量: 471
- 被引次数: 0