留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于量子万有引力搜索的SVM自驾故障诊断

李海涛 何玉珠 宋平

李海涛, 何玉珠, 宋平等 . 基于量子万有引力搜索的SVM自驾故障诊断[J]. 北京航空航天大学学报, 2016, 42(6): 1093-1098. doi: 10.13700/j.bh.1001-5965.2015.0417
引用本文: 李海涛, 何玉珠, 宋平等 . 基于量子万有引力搜索的SVM自驾故障诊断[J]. 北京航空航天大学学报, 2016, 42(6): 1093-1098. doi: 10.13700/j.bh.1001-5965.2015.0417
LI Haitao, HE Yuzhu, SONG Pinget al. SVM fault diagnosis of autopilot based on quantum inspired gravitational search algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(6): 1093-1098. doi: 10.13700/j.bh.1001-5965.2015.0417(in Chinese)
Citation: LI Haitao, HE Yuzhu, SONG Pinget al. SVM fault diagnosis of autopilot based on quantum inspired gravitational search algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(6): 1093-1098. doi: 10.13700/j.bh.1001-5965.2015.0417(in Chinese)

基于量子万有引力搜索的SVM自驾故障诊断

doi: 10.13700/j.bh.1001-5965.2015.0417
详细信息
    作者简介:

    李海涛 男,硕士研究生。主要研究方向:自动检测技术、故障诊断。E-mail:771084677@qq.com;何玉珠 男,博士,教授,博士生导师。主要研究方向:测试系统通用性技术、故障诊断和定位技术。Tel.:15811175527 E-mail:heyuzhuhe@buaa.edu.cn

    通讯作者:

    何玉珠,Tel.:15811175527 E-mail:heyuzhuhe@buaa.edu.cn

  • 中图分类号: TP277

SVM fault diagnosis of autopilot based on quantum inspired gravitational search algorithm

  • 摘要: 针对自动驾驶仪在实际测试过程中故障样本较少的情况,提出一种基于量子万有引力搜索算法(QGSA)的支持向量机(SVM)故障诊断模型。SVM能较好地解决小样本、非线性问题,适用于自动驾驶仪的故障诊断。为进一步提高万有引力搜索算法(GSA)对参数寻优的收敛速度和收敛精度,将基于GSA的QGSA应用于SVM的参数寻优中,以解决SVM由于参数选取不当导致过学习或欠学习的问题,从而获得最优的分类模型。通过模拟实验分析,当训练样本数量为50时,基于QGSA的SVM故障诊断模型分类准确率便能达到96.530 6%,而基于遗传算法(GA)的SVM故障诊断模型分类准确率为92.040 8%,基于GSA的SVM故障诊断模型分类准确率为91.632 7%。仿真实验结果表明,基于QGSA的SVM故障诊断模型具有更好的故障诊断能力。

     

  • [1] 钟宇,白云,黄孝文.基于RBF神经网络的导弹自动驾驶仪故障诊断[J].现代防御技术,2011,39(2):54-59. ZHONG Y,BAI Y,HUANG X W. Fault diagnosis of missile autopilot based on RBF neural network[J].Modern Defence Technology,2011,39(2):54-59(in Chinese).
    [2] 刘东平,单甘霖,张岐龙,等.基于改进遗传算法的支持向量机参数优化[J].微计算机应用,2010,31(5):11-15. LIU D P,SHAN G L,ZHANG Q L, et al. Parameters optimization of support vector machine based on improved genetic algorithm[J].Microcomputer Applications,2010,31(5):11-15(in Chinese).
    [3] ALWAN H B,KU-MAHAMUD K R.Optimizing support vector machine parameters using continuous ant colony optimization[C]//20127th International Conference on Computing and Convergence Technology.Piscataway,NJ:IEEE Press,2012:164-169.
    [4] 宋晓华,杨尚东,刘达.基于蛙跳算法的改进支持向量机预测方法及应用[J].中南大学学报(自然科学版),2011,42(9):2737-2740. SONG X H,YANG S D,LIU D. Improved support vector machine forecasting model by shuffled frog leaping algoritmh and its application[J].Journal of Central South University (Science and Technology),2011,42(9):2737-2740(in Chinese).
    [5] 薛浩然,张珂珩,李斌,等.基于布谷鸟算法和支持向量机的变压器故障诊断[J].电力系统保护与控制,2015,43(8):8-13. XUE H R,ZHANG K H,LI B, et al. Fault diagnosis of transformer based on the cuckoo search and support vector machine[J].Power System Protection and Control,2015,43(8):8-13(in Chinese).
    [6] ZHANG W,NIU P,LI G,et al.Forecasting of turbine heat rate with online least squares support vector machine based on gravitational search algorithm[J].Knowledge-Based Systems,2013,39(2):34-44.
    [7] 戢钢,王景成,葛阳,等.城市小时级需水量的改进型引力搜索算法-最小二乘支持向量机模型预测[J].控制理论与应用,2014,31(10):1376-1382. JI G,WANG J C,GE Y,et al.Gravitational search algorithm-least squares support vector machine model forecasting on hourly urban water demand[J].Control Theory and Applications,2014,31(10):1376-1382(in Chinese).
    [8] SOLEIMANPOUR-MOGHADAM M,NEZAMABADI-POUR H,FARSANGI M M.A quantum inspired gravitational search algorithm for numerical function optimization[J].Information Sciences,2014,267(5):83-100.
    [9] RASHEDI E,NEZAMABADI-POUR H,SARYAZDI S.GSA:A gravitational search algorithm[J].Information Sciences,2009,179(13):2232-2248.
    [10] RASHEDI E,NEZAMABADI-POUR H,SARYAZDI S.BGSA:Binary gravitational search algorithm[J].Natural Computing,2010,9(3):727-745.
    [11] SOLEIMANPOUR-MOGHADAM M, NEZAMABADI-POUR H,FARSANGI M M.A quantum behaved gravitational search algorithm[J].Intelligent Information Management,2012,4(6):390-395.
    [12] CORTES C,VAPNIK V.Support-vector networks[J].Machine Learning,1995,20(3):273-297.
    [13] DONG S,LUO T.Bearing degradation process prediction based on the PCA and optimized LS-SVM model[J].Measurement,2013,46(9):3143-3152.
    [14] 张周锁,李凌均,何正嘉.基于支持向量机的机械故障诊断方法研究[J].西安交通大学学报,2002,36(12):1303-1306. ZHANG Z S,LI L J,HE Z J. Research on diagnosis method of machinery fault based on support vector machine[J].Journal of Xi'an Jiaotong University,2002,36(12):1303-1306(in Chinese).
    [15] 李琼,陈利.一种改进的支持向量机文本分类方法[J].计算机技术与发展,2015,25(5):78-82. LI Q, CHEN L.An improved support vector machine text classification method[J].Computer Technology and Development,2015,25(5):78-82(in Chinese).
    [16] 庄严,白振林,许云峰.基于蚁群算法的支持向量机参数选择方法研究[J].计算机仿真,2011,28(5):216-219. ZHUANG Y,BAI Z L,XU Y F. Research on parameters of support vector machine based on ant colony algorithm[J].Computer Simulation,2011,28(5):216-219(in Chinese).
  • 加载中
计量
  • 文章访问数:  942
  • HTML全文浏览量:  196
  • PDF下载量:  471
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-06-23
  • 网络出版日期:  2016-06-20

目录

    /

    返回文章
    返回
    常见问答