留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

沉积环境下涡轮叶片前缘气膜冷却的实验研究

杨晓军 于天浩 胡英琦 常嘉文

杨晓军, 于天浩, 胡英琦, 等 . 沉积环境下涡轮叶片前缘气膜冷却的实验研究[J]. 北京航空航天大学学报, 2021, 47(11): 2189-2199. doi: 10.13700/j.bh.1001-5965.2020.0380
引用本文: 杨晓军, 于天浩, 胡英琦, 等 . 沉积环境下涡轮叶片前缘气膜冷却的实验研究[J]. 北京航空航天大学学报, 2021, 47(11): 2189-2199. doi: 10.13700/j.bh.1001-5965.2020.0380
YANG Xiaojun, YU Tianhao, HU Yingqi, et al. Experimental study on film cooling of turbine blade leading edge in deposition environment[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(11): 2189-2199. doi: 10.13700/j.bh.1001-5965.2020.0380(in Chinese)
Citation: YANG Xiaojun, YU Tianhao, HU Yingqi, et al. Experimental study on film cooling of turbine blade leading edge in deposition environment[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(11): 2189-2199. doi: 10.13700/j.bh.1001-5965.2020.0380(in Chinese)

沉积环境下涡轮叶片前缘气膜冷却的实验研究

doi: 10.13700/j.bh.1001-5965.2020.0380
基金项目: 

中国民航大学中央高校基本科研业务费项目 3122019187

详细信息
    通讯作者:

    杨晓军, E-mail: xiaojunyoung@hotmail.com

  • 中图分类号: V231.1

Experimental study on film cooling of turbine blade leading edge in deposition environment

Funds: 

The Fundamental Research Funds for the Central Universities Specialized by Civil Aviation University of China 3122019187

More Information
  • 摘要:

    为研究沉积物对涡轮叶片前缘气膜冷却的影响,实验采用石蜡沉积模拟真实沉积。通过改变主流的温度、气膜孔射流角度及气膜孔孔径,观察了沉积环境下气膜冷却效率及沉积率的变化规律。实验结果表明:颗粒物沉积在障碍物表面的形貌受到主流温度的影响较大,当主流温度接近颗粒物熔点时,沉积覆盖最明显。在相同实验条件下,随着射流角度增大,单个气膜孔覆盖区域减小,气膜冷却效率下降,沉积前后,射流角度25°和65°的气膜冷却效率最大相差2%和5.6%,沉积率随射流角度的增大而升高;随着孔径增大,气膜冷却效率先降低后升高,其中4.5 mm孔径无论是否沉积,气膜冷却效率均最高,比3 mm孔径的气膜冷却效率高3.6%和3.2%。沉积率在孔径3 mm时最低。

     

  • 图 1  实验装置图

    Figure 1.  Experimental device

    图 2  圆柱实验件示意图

    Figure 2.  Sketch map of cylinder experimental piece

    图 3  红外热像仪温度标定曲线

    Figure 3.  Temperature calibration curve of thermal infrared imager

    图 4  石蜡颗粒物扫描电镜图

    Figure 4.  SEM of paraffin particles

    图 5  石蜡颗粒沉积粒径分布

    Figure 5.  Particle size distribution of paraffin deposition

    图 6  不同主流温度下石蜡颗粒沉积形貌图

    Figure 6.  Morphology of paraffin particle deposition at different mainstream temperatures

    图 7  沉积率随主流温度的变化

    Figure 7.  Deposition rate varying with mainstream temperature

    图 8  不同射流角度下气膜冷却圆柱表面沉积前后形貌图

    Figure 8.  Morphology of film cooling cylinder surface before and after deposition at different jet angles

    图 9  不同射流角度下气膜冷却圆柱表面沉积前后气膜冷却效率云图

    Figure 9.  Contour of film cooling efficiency before and after deposition of film cooling cylinder surface at different jet angles

    图 10  沉积前不同射流角度下滞止线上的气膜冷却效率曲线

    Figure 10.  Film cooling efficiency curves of stagnation line at different jet angles before deposition

    图 11  沉积后不同射流角度下滞止线上的气膜冷却效率曲线

    Figure 11.  Film cooling efficiency curves of stagnation line at different jet angles after deposition

    图 12  沉积率随射流角度的变化

    Figure 12.  Deposition rate varying with jet angle

    图 13  不同气膜孔孔径下气膜冷却圆柱表面沉积前后形貌图

    Figure 13.  Morphology of film cooling cylinder surface before and after deposition at different film pore diameters

    图 14  不同气膜孔孔径下气膜冷却圆柱表面沉积前后气膜冷却效率云图

    Figure 14.  Contour of film cooling efficiency before and after deposition of film cooling cylinder surface at different film pore diameters

    图 15  沉积前不同气膜孔孔径下滞止线上的气膜冷却效率曲线

    Figure 15.  Film cooling efficiency curves of stagnation line at different film pore diameters before deposition

    图 16  沉积后不同气膜孔孔径下滞止线上的气膜冷却效率曲线

    Figure 16.  Film cooling efficiency curves of stagnation line at different film pore diameters after deposition

    图 17  沉积率随气膜孔孔径的变化

    Figure 17.  Deposition rate varying with film pore diameter

    表  1  颗粒物性和缩放参数对照

    Table  1.   Contrast of particle properties and scaling parameters

    参数 发动机 实验
    颗粒粒径/μm 0.1~10 1~120
    颗粒密度/(kg·m-3) 1 980[4] 900
    颗粒速度/(m·s-1) 93[9] 3
    动力黏度/(kg·(m·s)-1) 5.55×10-5 1.82×10-5
    气膜孔直径/mm 0.5 3
    熔解潜热/(J·kg-1) 650 000[18] 234 720
    比热容/(J·(kg·K)-1) 730[19] 2 090
    颗粒固化温度/K 1 533[20] 331.15
    主流温度/K 1 500[21] 328.15
    颗粒初始温度/K 1 593[21] 373.15
    颗粒输运长度/m 0.26 1.5
    Stk 0.004~40 0.003~40
    TSP 0.012~1.2 0.02~2.8
    下载: 导出CSV
  • [1] DUNN M G, PADOVA C, MOLLER J E, et al. Performance deterioration of a turbofan and a turbojet engine upon exposure to a dust environment[J]. Journal of Engineering for Gas Turbines and Power, 1987, 109(3): 336-343. doi: 10.1115/1.3240045
    [2] KIM J, DUNN M G, BARAN A J, et al. Deposition of volcanic materials in the hot sections of two gas turbine engines[C]//ASME 1992 International Gas Turbine and Aeroengine Congress and Exposition. New York: ASME, 1992: V003T05A001.
    [3] JENSEN J W, SQUIRE S W, BONS J P, et al. Simulated land-based turbine deposits generated in an accelerated deposition facility[J]. Journal of Turbomachinery, 2005, 127(3): 462-470. doi: 10.1115/1.1860380
    [4] BONS J P, CROSBY J, WAMMACK J E, et al. High-pressure turbine deposition in land-based gas turbines from various synfuels[J]. Journal of Engineering for Gas Turbines and Power, 2007, 129(1): 135-143. doi: 10.1115/1.2181181
    [5] SUNDARAM N, BARRINGER M D, THOLE K A. Effects of deposits on film cooling of a vane endwall along the pressure side[J]. Journal of Turbomachinery, 2008, 130(4): 041006. doi: 10.1115/1.2812332
    [6] CROSBY J M, LEWIS S, BONS J P, et al. Effects of temperature and particle size on deposition in land based turbines[J]. Journal of Engineering for Gas Turbines and Power, 2008, 130(5): 051503. doi: 10.1115/1.2903901
    [7] AI W, LAYCOCK R G, RAPPLEYE D S, et al. Effect of particle size and trench configuration on deposition from fine coal flyash near film cooling holes[J]. Energy & Fuels, 2011, 25(3): 1066-1076. doi: 10.1021/ef101375g
    [8] SMITH C, BARKER B, CLUM C, et al. Deposition in a turbine cascade with combusting flow[C]//ASME Turbo Expo 2010: Power for Land, Sea, and Air. New York: ASME, 2010: 743-751.
    [9] LAWSON S A, THOLE K A. Simulations of multiphase particle deposition on endwall film-cooling[J]. Journal of Turbomachinery, 2012, 134(1): 011003. doi: 10.1115/1.4002962
    [10] LAWSON S A, THOLE K A. Simulations of multiphase particle deposition on endwall film-cooling holes in transverse trenches[J]. Journal of Turbomachinery, 2012, 134(5): 051040. doi: 10.1115/1.4004756
    [11] ALBERT J E, BOGARD D G. Experimental simulation of contaminant deposition on a film-cooled turbine vane pressure side with a trench[J]. Journal of Turbomachinery, 2013, 135(5): 051008. doi: 10.1115/1.4007821
    [12] AI W, MURRAY N, FLETCHER T H, et al. Effect of hole spacing on deposition of fine coal flyash near film cooling holes[J]. Journal of Turbomachinery, 2012, 134(4): 041021. doi: 10.1115/1.4003717
    [13] 杨晓军, 祝佳雄. 涡轮叶栅通道内颗粒物沉积过程的数值模拟[J]. 航空学报, 2017, 38(5): 31-42. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201705004.htm

    YANG X J, ZHU J X. Numerical simulation of particle deposition process inside turbine cascade[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(5): 31-42(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201705004.htm
    [14] 裴钰. 燃气轮机涡轮叶片表面污染物沉积模型研究[D]. 天津: 中国民航大学, 2015.

    PEI Y. Research of deposition model on blade surface of gas turbine[D]. Tianjin: Civil Aviation University of China, 2015(in Chinese).
    [15] 张斐, 刘振侠, 刘振刚, 等. 不同来流条件对涡轮叶片表面颗粒沉积影响的实验研究[J]. 推进技术, 2019, 40(7): 1536-1545. https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201907012.htm

    ZHANG F, LIU Z X, LIU Z G, et al. Experimental simulation of particle deposition on turbine blade surface with different free stream conditions[J]. Journal of Propulsion Technology, 2019, 40(7): 1536-1545(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201907012.htm
    [16] 黄珂楠, 张靖周, 郭文. 气膜孔内局部堵塞对气膜冷却特性的影响[J]. 航空动力学报, 2014, 29(6): 1330-1338. https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201406010.htm

    HUANG K N, ZHANG J Z, GUO W. Effect of partial blockage inside film hole on film cooling characteristics[J]. Journal of Aerospace Power, 2014, 29(6): 1330-1338(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201406010.htm
    [17] DAVIDSON F T, KISTENMACHER D A, BOGARD D G, et al. A study of deposition on a turbine vane with a thermal barrier coating and various film cooling geometries[J]. Journal of Turbomachinery, 2012, 136(4): 1769-1780. http://www.onacademic.com/detail/journal_1000036042285110_4d44.html
    [18] LI R, WANG L, YANG T, et al. Investigation of MSWI fly ash melting characteristic by DSC-DTA[J]. Waste Management, 2007, 27(10): 1383-1392. doi: 10.1016/j.wasman.2006.11.017
    [19] KRISHNAIAH S, SINGH D N. Determination of thermal properties of some supplementary cementing materials used in cement and concrete[J]. Construction and Building Materials, 2006, 20(3): 193-198. doi: 10.1016/j.conbuildmat.2004.10.001
    [20] WANG Q, TIAN S, WANG Q, et al. Melting characteristics during the vitrification of MSWI fly ash with a pilot-scale diesel oil furnace[J]. Journal of Hazardous Materials, 2008, 160(2-3): 376-381. doi: 10.1016/j.jhazmat.2008.03.043
    [21] DENNIS R A, SHELTON W W, LE P. Development of baseline performance values for turbines in existing IGCC applications[C]//ASME Turbo Expo 2007: Power for Land, Sea, and Air. New York: ASME, 2007: 1017-1049.
    [22] 刘晓红, 罗翔, 陶智. 大小孔交替排列对气膜冷却效率的影响[J]. 北京航空航天大学学报, 2010, 36(11): 1271-1274. https://bhxb.buaa.edu.cn/CN/Y2010/V36/I11/1271

    LIU X H, LUO X, TAO Z. The effect of alternate arrangement of big and small holes on film cooling efficiency[J]. Journal of Beijing University of Aeronautics and Astronautics, 2010, 36(11): 1271-1274(in Chinese). https://bhxb.buaa.edu.cn/CN/Y2010/V36/I11/1271
  • 加载中
图(17) / 表(1)
计量
  • 文章访问数:  741
  • HTML全文浏览量:  144
  • PDF下载量:  166
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-03
  • 录用日期:  2021-02-06
  • 网络出版日期:  2021-11-20

目录

    /

    返回文章
    返回
    常见问答