-
摘要:
基于电磁干扰要素理论,提出一种数字电路电磁传导发射多源模型提取方法,用于解决数字电路电磁传导发射的建模问题。以电磁干扰要素理论为出发,综合考虑数字电路模块特点,将数字电路电磁传导发射模型划分为若干基本要素和扩展要素。针对数字电路时钟信号特征,选取梯形脉冲序列为基本要素形式,提出一种改进的联合估计算法用于提取基本要素参数及对应扩展要素系统传递函数模型;针对数字电路多源共存的情况,提出一种基于自相关函数的多源辨识分离方法,从而实现从一组测试数据中识别出多个基本要素及对应扩展要素,并最终完成数字电路电磁传导发射的建模。仿真及实验结果验证了所提方法的可行性和准确性。
Abstract:This paper proposes a multi-source model extraction method based on electromagnetic interference element theory to solve the modeling problem of digital circuit electromagnetic conducted emission. Based on the basic emission waveform theory, this paper divides the digital circuit electromagnetic conducted emission model into two parts: basic elements and extended elements. In view of the characteristics of digital circuit clock signals, the trapezoidal pulse sequence is selected as the basic element form, and an improved joint estimation algorithm is proposed to extract the basic element parameters and the corresponding extended element system transfer function model. Aimed at the coexistence of multiple sources of digital circuits, a multi-source identification and separation method based on autocorrelation function is proposed to separate different basic elements from a set of test data, and finally complete the modeling of electromagnetic conducted emission of digital circuits. The simulation and experimental results verify the feasibility and accuracy of the proposed method.
-
表 1 某设备数字电路时钟参数参考值
Table 1. Reference value of clock parameters of digital circuit of certain equipment
序号 时钟频率/MHz 上升时间/ns 幅度/V 占空比/% 1 28.2 4.3 3.3 48 2 15 1.8 5 47 3 47 2.13 5 49 表 2 频率采样间隔设定值
Table 2. Frequency sampling interval setting
序号 起始频率/MHz 终止频率/MHz 采样间隔/kHz 1 0 10 [9.1, 10.9]随机值 2 10 200 [8.2, 11.8]随机值 3 200 1 000 [7.3, 12.7]随机值 表 3 基本要素提取结果与设定值的对比
Table 3. Comparison of extraction results and set values of basic elements
序号 时钟频率/MHz 上升时间/ns 占空比/% 设定值 提取值 设定值 提取值 设定值 提取值 1 28.2 28.17 4.3 4.17 48 48 2 15 15.04 1.8 1.88 47 47.1 3 47 46.51 2.13 2.15 49 48.7 表 4 基本要素提取结果
Table 4. Extraction results of basic elements
序号 时钟频率/MHz 上升时间/ns(提取值) 占空比/%(提取值) 设定值 提取值 1 5 4.978 22.1 49.5 2 7.33 7.334 10.9 49.2 -
[1] 苏东林, 谢树果, 戴飞, 等. 系统级电磁兼容性量化设计理论与方法[M]. 北京: 国防工业出版社, 2015: 37.SU D L, XIE S G, DAI F, et al. The theory and method of quantification design on system-level electromagnetic compatibility[M]. Beijing: National Defense Industry Press, 2015: 37(in Chinese). [2] 苏东林, 雷军, 王冰切. 系统电磁兼容技术综述与展望[J]. 宇航计测技术, 2007(z1): 34-38. doi: 10.3969/j.issn.1000-7202.2007.z1.006SU D L, LEI J, WANG B Q. Review and perspective of system-level EMC technologies[J]. Journal of Astronautic Metrology and Measurement, 2007(z1): 34-38(in Chinese). doi: 10.3969/j.issn.1000-7202.2007.z1.006 [3] 苏东林, 王冰切, 金德琨, 等. 电子战特种飞机电磁兼容预设计技术[J]. 北京航空航天大学学报. 2006, 32(10): 1241-1245. doi: 10.3969/j.issn.1001-5965.2006.10.022SU D L, WANG B Q, JIN D K, et al. The prediction techniques of electromagnetic compatability for EW-warfare aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics, 2006, 32(10): 1241-1245(in Chinese). doi: 10.3969/j.issn.1001-5965.2006.10.022 [4] 中国人民解放军总装备部. 军用设备和分系统电磁发射和敏感度要求与测量: GJB 151B-2013[S]. 北京: 中国人民解放军总装备部, 2013.The General Armament Department of PLA. Electromagnetic emission anol susceptibility requirements and measurements for military equipment and subsystems: GJB 151-2013[S]. Beijing: The General Armament Department of PLA, 2013(in Chinese). [5] 张玉廷, 张华. 嵌入式单机设备电磁兼容性研究[J]. 安全与电磁兼容, 2012(5): 57-63. doi: 10.3969/j.issn.1005-9776.2012.05.010ZHANG Y T, ZHANG H. Electromagnetic compatibility analysis on the embedded stand-alone equipment[J]. Safety and EMC, 2012(5): 57-63(in Chinese). doi: 10.3969/j.issn.1005-9776.2012.05.010 [6] ZHOU C L, WANG J M, PAN X F, et al. Modelling and analysis of electromagnetic interferences for a 32-bit digital signal controller[C]//201210th International Symposium on Antennas, Propagation and EM Theony. Piscataway: IEEE Press, 2013: 1132-1135. [7] International Electrotechnical Commission. Models of integrated circuits for EMI behavioral simulation ICEM-CE, ICEM conducted emission model: IEC62433-2[S]. Geneva: International Electrotechnical Commission, 2008: 9-11. [8] 陈曦, 谢树果, 杜威, 等. 有源集成器件PDN矢量拟合建模方法[J]. 北京航空航天大学学报, 2013, 39(9): 1249-1253. https://bhxb.buaa.edu.cn/CN/Y2013/V39/I9/1249CHEN X, XIE S G, DU W, et al. Active integrated devices PDN vector fitting modeling method[J]. Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(9): 1249-1253(in Chinese). https://bhxb.buaa.edu.cn/CN/Y2013/V39/I9/1249 [9] GHFIRI C, DURIER A, BOYER A, et al. Methodology of modeling of the internal activity of a FPGA for conducted emission prediction purpose[C]//Electromagnetic Compatibility of Integrated Circuits. Piscataway: IEEE Press, 2017: 309-314. [10] GHFIRI C, BOYER A, DURIER A, et al. A new methodology to build the internal activity block of ICEM-CE for complex integrated circuits[J]. IEEE Transactions on Electromagnetic Compatibility, 2017, 99: 1-10. http://ieeexplore.ieee.org/iel7/15/4358749/08101311.pdf [11] MA S, PAN M, FANG W, et al. Conducted emission of I/O pins near power pairs of a microcontroller integrated circuit[C]//2016 Asia-Pacific International Symposium on Electromagnetic Compatibility (APEMC). Piscataway: IEEE Press, 2016: 950-953. [12] SU D, XIE S, CHEN A, et al. Basic emission waveform theory: A novel interpretation and source identification method for electromagnetic emission of complex systems[J]. IEEE Transactions on Electromagnetic Compatibility, 2017, 60(5): 1330-1339. http://ieeexplore.ieee.org/iel7/15/4358749/08233173.pdf [13] SU D, XU H, ZHOU Z, et al. An improved method of trapezoidal waves time-domain parameters extraction from EMI spectrum[C]//2019 International Applied Computational Electromagnetics Society Symposium, 2019: 1-2. [14] 凌波, 林赟, 孙宏涛, 等. 微小空间内电磁干扰要素检测与辨识方法[J]. 北京航空航天大学学报, 2018, 44(5): 914-922. doi: 10.13700/j.bh.1001-5965.2017.0347LING B, LIN Y, SUN H T, et al. Detection and identification method of electromagnetic interference elements in limited-space[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(5): 914-922(in Chinese). doi: 10.13700/j.bh.1001-5965.2017.0347 [15] HAO X, XIE S, ZHANG W. A system and source joint estimation method for EM emission modeling of clock circuits[C]//2017 XXXIInd General Assembly and Scientific Symposium of the International Union of Radio Science (URSI GASS). Piscataway: IEEE Press, 2017: 1-4. [16] HAO X, XIE S, CHEN Z. A parametric conducted emission modeling method of a switching model power supply (SMPS) chip by a developed vector fitting algorithm[J]. Electronics, 2019, 8(7): 725. doi: 10.3390/electronics8070725 [17] 卫颖. 电子设备典型干扰要素量化表征方法研究[D]. 北京: 北京航空航天大学, 2013: 47-48.WEI Y. Research on the quantization method for the typical factors of the electrical equipment[D]. Beijing: Beihang University, 2013: 47-48(in Chinese). [18] 尚晓凡. 基于电磁兼容要素理论的开关电源传导发射表征建模方法研究[D]. 北京: 北京航空航天大学, 2018: 39-42.SHANG X F. A study on modeling and analyzing of SMPS conducted emission based on the basic emission waveform theory[D]. Beijing: Beihang University, 2018: 39-42(in Chinese). [19] 林琴, 郭玉堂, 刘亚楠. 基于自相关平方函数与小波变换的基音检测[J]. 计算机应用, 2009, 29(5): 1433-1436. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJY200905071.htmLIN Q, GUO Y T, LIU Y N. Pitch detection based on autocorrelation square function and wavelet transform[J]. Journal of Computer Applications, 2009, 29(5): 1433-1436(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSJY200905071.htm [20] 郭国雄, 栾长福, 陆子强. 方差分析在检验股票价格周期中的应用[J]. 华南理工大学学报(自然科学版), 2003, 31(9): 44-46. doi: 10.3321/j.issn:1000-565X.2003.09.010GUO G X, LUAN C F, LU Z Q. Application of variance analysis to the examination of stock price periods[J]. Journal of South China University of Technology(Natural Science Edition), 2003, 31(9): 44-46(in Chinese). doi: 10.3321/j.issn:1000-565X.2003.09.010 [21] 张福渊, 郭绍建, 萧亮壮, 等. 概率统计及随机过程[M]. 北京: 北京航空航天大学出版社, 2000.ZHANG F Y, GUO S J, XIAO L Z, et al. Probability statistics and stochastic process[M]. Beijing: Beihang University Press, 2000(in Chinese).