Citation: | XU Qiang, WANG Hongli, HE Yiyang, et al. Improved pulsar navigation measurement equation based on truncation errors[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(9): 1974-1981. doi: 10.13700/j.bh.1001-5965.2017.0807(in Chinese) |
Considering that the traditional extended Kalman filter (EKF) algorithm has to neglect the higher order terms of the measurement model because of linearization, which causes the problem of large truncation errors in X-ray pulsar navigation, an improved linear measurement equation suitable for pulsar navigation is proposed. First, the paper analyzes the physical meaning of annual parallax effect and Shapiro effect which cause the truncation error in the process of simplifying the measurement equation. The two higher order terms' mathematical models are established and numerical analysis is conducted. Then, using the method of Taylor expansion, the two higher order terms are linearized to establish an improved linear measurement equation. Finally, using the earth satellite orbit data, the two measurement equations are respectively applied to the EKF algorithm of the pulsar navigation to verify the validity of the improved measurement equation. The results show that the improved linear measurement equation can guarantee the position and velocity estimation error within 250 m and 2 m/s under the consideration of the higher order terms, and that the improved linear measurement equation has some robustness to the higher order term changes. However, the traditional simplified measurement equation can cause divergence.
[1] |
PINES D J.ARPA/DARPA space programs[M].Arlington:XNAV Industry Day, 2004:1-5.
|
[2] |
帅平, 张新源, 黄良伟, 等.脉冲星导航试验卫星科学观测数据分析[J].空间控制技术与应用, 2017, 43(2):1-6. doi: 10.3969/j.issn.1674-1579.2017.02.001
SHUAI P, ZHANG X Y, HUANG L W, et al.X-ray pulsar navigation test satellite science data analysis[J].Aerospace Control and Application, 2017, 43(2):1-6(in Chinese). doi: 10.3969/j.issn.1674-1579.2017.02.001
|
[3] |
帅平, 陈绍龙, 吴一凡, 等.X射线脉冲星导航原理[J].宇航学报, 2007, 28(6):1538-1543. doi: 10.3321/j.issn:1000-1328.2007.06.020
SHUAI P, CHEN S L, WU Y F, et al.Navigation principles using X-ray pulsars[J].Journal of Astronautics, 2007, 28(6):1538-1543(in Chinese). doi: 10.3321/j.issn:1000-1328.2007.06.020
|
[4] |
毛悦, 宋小勇.脉冲星时间模型精化及延迟修正分析[J].武汉大学学报(信息科学版), 2009, 34(5):581-584. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=SciencePaper201303040000298007
MAO Y, SONG X Y.Accurating and delay correction analysis of pulsar timing model[J].Geomatics and Information Science of Wuhan University, 2009, 34(5):581-584(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=SciencePaper201303040000298007
|
[5] |
刘劲.基于X射线脉冲星的航天器自主导航方法研究[D].武汉: 华中科技大学, 2008: 55-56.
LIU J.X-ray pulsar-based spacecraft autonomous navigation[D].Wuhan: Huazhong University of Science and Technology, 2008: 55-56(in Chinese).
|
[6] |
乔黎.X射线脉冲星高轨道卫星自主导航及其应用技术研究[D].南京: 南京航空航天大学, 2010: 23-27.
QIAO L.X-ray pulsar-based autonomous navigation and its application to high earth orbits satellites[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2010: 23-27(in Chinese).
|
[7] |
王敏.基于X射线脉冲星的航天器自主导航滤波算法研究[D].哈尔滨: 哈尔滨工业大学, 2015: 14-18.
WANG M.The research of spacecraft autonomous navigation algorithm based on the X-ray pulsars[D].Harbin: Harbin Institute of Technology, 2015: 14-18(in Chinese).
|
[8] |
CHEN P T, SPEYER J L, BAYARD D S, et al.Autonomous navigation using X-ray pulsars and multirate processing[J].Journal of Guidance, Control, and Dynamics, 2017, 40(9):2237-2249. doi: 10.2514/1.G002705
|
[9] |
NING X L, GUI M Z, ZHANG J, et al.Impact of the pulsar's direction on CNS/XNAV integrated navigation[J].Transactions on Aerospace and Electronic Systems, 2017, 53(6):3043-3055. doi: 10.1109/TAES.2017.2725518
|
[10] |
宁晓琳, 马辛, 张学亮, 等.基于ASUKF的火星探测器脉冲星自主导航方法[J].北京航空航天大学学报, 2012, 38(1):22-27. http://bhxb.buaa.edu.cn/CN/abstract/abstract12169.shtml
NING X L, MA X, ZHANG X L, et al.Autonomous pulsars navigation method based on ASUKF for Mars probe[J].Journal of Beijing University of Aeronautics and Astronautics, 2012, 38(1):22-27(in Chinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract12169.shtml
|
[11] |
费保俊, 孙维瑾, 潘高田, 等.X射线脉冲星自主导航的光子到达时间转换[J].空间科学学报, 2010, 30(1):85-90. http://d.old.wanfangdata.com.cn/Periodical/kjkxxb201001014
FEI B J, SUN W J, PAN G T, et al.Transformation of photon time of arrival in XNAV[J].Chinese Journal of Space Science, 2010, 30(1):85-90(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/kjkxxb201001014
|
[12] |
孙海峰.X射线脉冲星导航信号特性分析及具有多物理特性的仿真系统研究[D].西安: 西安电子科技大学, 2015: 25-28
SUN H F.Study on signal characteristics of X-ray pulsar based navigation and simulation experiment system with multi-physical features[D].Xi'an: Xidian University, 2015: 25-28(in Chinese).
|
[13] |
李小平, 方海燕, 孙海峰, 等.X射线脉冲星大尺度时间转换模型研究[J].载人航天, 2015, 21(6):628-634. doi: 10.3969/j.issn.1674-5825.2015.06.016
LI X P, FANG H Y, SUN H F, et al.Research on large-scale time transform model of X-ray pulsar[J].Manned Spaceflight, 2015, 21(6):628-634(in Chinese). doi: 10.3969/j.issn.1674-5825.2015.06.016
|
[14] |
SHEIKH S I, HELLINGS R W, MATZNER R A.High-order pulsar timing for navigation[C]//Proceeding of the 63rd Annual Meeting of the Institute of Navigation.Cambridge: Institute of Navigation, 2007: 432-443.
|
[15] |
杨廷高.关于脉冲星脉冲到达时间转换方程[J].时间频率学报, 2009, 32(2):154-159. doi: 10.3969/j.issn.1674-0637.2009.02.012
YANG T G.On transfer equation of pulsar pulse arrival time[J].Journal of Time and Frequency, 2009, 32(2):154-159(in Chinese). doi: 10.3969/j.issn.1674-0637.2009.02.012
|
[16] |
李志豪.基于X射线脉冲星的航天器导航滤波算法仿真分析[D].长沙: 国防科学技术大学, 2008: 52.
LI Z H.Simulation and analysis of the filters for spacecraft navigation based on X-ray pulsars[D].Changsha: National University of Defense Technology, 2008: 52(in Chinese).
|
[17] |
李晓宇, 姜宇, 金晶, 等.脉冲星导航系统的星历表误差RKF校正算法[J].宇航学报, 2017, 38(1):26-33. doi: 10.3873/j.issn.1000-1328.2017.01.004
LI X Y, JIANG Y, JIN J, et al.RKF method for pulsar based navigation with emphasis error correction[J].Journal of Astronautics, 2017, 38(1):26-33(in Chinese). doi: 10.3873/j.issn.1000-1328.2017.01.004
|