Citation: | ZHU Xiaopeng, HUANG Jun, CHEN Lei, et al. Physical interpretation of mathematical homogenization method for thermomechanical problem[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(11): 2139-2151. doi: 10.13700/j.bh.1001-5965.2019.0088(in Chinese) |
The mathematical expression of high-order mathematical homogenization method (MHM) is formulated by constructing decoupling form of each order perturbation for the thermomechanical problem of periodical composite structure, and it is converted into a matrix form by weighted residual method, which is convenient for use as standard finite element method. The elastic influence function and the heat influence function are respectively compared to the elastic virtual displacement and the thermal virtual displacement, and the physical interpretation of each order influence function and perturbation displacement are revealed by the self-balancing characteristics and dimensional analysis and geometric visualization. The second-order perturbation displacement is emphasized for the analysis of micro structure. The numerical results verify the correctness of high-order MHM matrix form and the analysis of physical interpretation.
[1] |
BERTHELOT J M. Composite materials:Mechanical behavior and structural analysis[M]. New York:Springer, 1999.
|
[2] |
KALIDINDI S R, ABUSAFIEH A.Longitudinal and transverse moduli and strengths of low angle 3-D braided composites[J]. Journal of Composite Materials, 1996, 30(8):885-905. doi: 10.1177/002199839603000802
|
[3] |
BABUSKA I.Solution of interface problems by homogenization, Parts I[J]. SIAM Journal on Mathematical Analysis, 1976, 7(5): 603-634. doi: 10.1137/0507048
|
[4] |
BENSSOUSAN A, LIONS J L.Asymptotic analysis for periodic structures[M]. Amsterdam:North-Holland, 1978.
|
[5] |
STROUBOULIS T, BABUSKA I, COPPS K.The generalized finite element method:An example of its implementation and illustration of its performance[J]. International Journal for Numerical Methods in Engineering, 2000, 47(8):1401-1417. doi: 10.1002/(SICI)1097-0207(20000320)47:8<1401::AID-NME835>3.0.CO;2-8
|
[6] |
BABUSKA I, OSBOM J.Generalized finite element methods:Their performance and their relation to mixed methods[J]. SIAM Journal on Numerical Analysis, 1983, 20(3):510-536. doi: 10.1137/0720034
|
[7] |
HOU T Y, WU X H.A multiscale finite element method for elliptic problems in composite materials and porous media[J]. Journal of Computational Physics, 1997, 134(1):169-189.
|
[8] |
HOU T Y, WU X H, CAI Z Q.Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients[J]. Mathematics of Computation, 1999, 68(227):913-943. doi: 10.1090/S0025-5718-99-01077-7
|
[9] |
E W, ENGQUIST B.The heterogeneous multiscale methods[J]. Communications in Mathematical Sciences, 2003, 1:87-132. doi: 10.4310/CMS.2003.v1.n1.a8
|
[10] |
E W, ENGQUIST B, LI X T, et al.Heterogeneous multiscale methods:A review[J]. Communications in Computational Physics, 2007, 2(3):367-450.
|
[11] |
XING Y F, YANG Y.An eigenelement method of periodical composite structures[J]. Composite Structures, 2011, 93(2):502-512. doi: 10.1016/j.compstruct.2010.08.029
|
[12] |
XING Y F, YANG Y, WANG X M.A multiscale eigenelement method and its application to periodical composite structures[J]. Composite Structures, 2010, 92:2265-2275. doi: 10.1016/j.compstruct.2009.08.006
|
[13] |
TERADA K, KURUMATANI M, USHIDAI N, et al.A method of two-scale thermo-mechanical analysis for porous solids with micro-scale heat transfer[J]. Computational Mechanics, 2010, 46(2):269-285.
|
[14] |
MUHAMMAD R, ERDATA N, NAOYUKI W, et al.A novel asymptotic expansion homogenization analysis for 3-D composite with relieved periodicity in the thickness direction[J]. Composites Science and Technology, 2014, 97:63-73. doi: 10.1016/j.compscitech.2014.04.006
|
[15] |
MUHAMMAD R, ERDATA N, NAOYUKI W, et al.Thermomechanical properties and stress analysis of 3-D textile composites by asymptotic expansion homogenization method[J]. Composites Part B:Engineering, 2014, 60:378-391. doi: 10.1016/j.compositesb.2013.12.038
|
[16] |
BARROQUEIRO B, DIAS-DE-OLIVEIRA J, PINHO-DA-CRUZ J, et al.Practical implementation of asymptotic expansion homogenizationin thermoelasticity using a commercial simulation software[J]. Composite Structures, 2016, 141:117-131. doi: 10.1016/j.compstruct.2016.01.036
|
[17] |
ZHAI J J, CHENG S, ZENG T, et al.Thermo-mechanical behavior analysis of 3D braided composites by multiscale finite element method[J]. Composite Structures, 2017, 176:664-672. doi: 10.1016/j.compstruct.2017.05.064
|
[18] |
李志青, 冯永平.一类小周期结构热力耦合问题的双尺度渐近分析[J].广州大学学报, 2016, 15(2):27-32.
LI Z Q, FENG Y P.Two-scale asymptotic analysis on one class of thermoelastic coupling problem in small periodic structure[J]. Chinese Journal of Guangzhou University, 2016, 15(2):27-32(in Chinese).
|
[19] |
YANG Z Q, CUI J Z, ZHOU S.Thermo-mechanical analysis of periodic porous materials with microscale heat transfer by multiscale asymptotic expansion method[J]. International Journal of Heat and Mass Transfer, 2016, 92:904-919. doi: 10.1016/j.ijheatmasstransfer.2015.09.055
|
[20] |
GUAN X F, LIU X, JIA X, et al.A stochastic multiscale model for predicting mechanical properties of fiber reinforced concrete[J]. International Journal of Solids and Structures, 2015, 56-57:280-289. doi: 10.1016/j.ijsolstr.2014.10.008
|
[21] |
YANG Z Q, CUI J Z, MA Q.The second-order two-scale computation for integrated heat transfer problem with conduction, convection and radiationin periodic porous materials[J]. Discrete and Continous Dynamical System-Series B, 2014, 19(3):827-848. doi: 10.3934/dcdsb.2014.19.827
|
[22] |
YANG Z Q, SUN Y, CUI J Z.A multiscale algorithm for heat conduction-radiation problems in porous materials with quasi-periodic structures[J]. Communications in Computational Physics, 2018, 24(1):204-233.
|
[23] |
ALLAIRE G, HABIBI Z.Second order corrector in the homogenization of a conductive-radiative heat transfer problem[J]. Discrete and Continuous Dynamical System-Series B, 2013, 18(1): 1-36.
|
[24] |
WAN X, CAO L Q, WONG Y S.Multiscale computation and convergence for coupled thermoelastic system in composite materials[J]. Multiscale Model & Simulation, 2015, 13(2):661-690.
|
[25] |
YANG Z Q, CUI J Z, SUN Y, et al.Multiscale analysis method for thermo-mechanical performance of periodic porous materials with interior surface radiation[J]. International Journal for Numerical Methods in Engineering, 2016, 105(5):323-350. doi: 10.1002/nme.4964
|
[26] |
HAN F, CUI J Z, YU Y.The statistical second-order two-scale method for thermomechanical properties of statistically inhomogeneous materials[J]. Computational Materials Science, 2009, 46(3):654-659. doi: 10.1016/j.commatsci.2009.03.026
|
[27] |
HAN F, CUI J Z, YU Y.The statistical second-order two-scale method for mechanical properties of statistically inhomogeneous materials[J]. International Journal for Numerical Methods in Engineering, 2010, 84(8):972-988. doi: 10.1002/nme.2928
|
[28] |
XING Y F, CHEN L.Physical interpretation of multi-scale asymptotic expansion method[J]. Composite Structures, 2014, 116:694-702. doi: 10.1016/j.compstruct.2014.06.004
|
[29] |
郑健龙, 李友云, 钱国平.多尺度计算方法-均匀化和平均化[M].北京:科学出版社, 2010.
ZHENG J L, LI Y Y, QIAN G P.Multi-scale calculation methods-homogenization and averaging[M]. Beijing:Science Press, 2010(in Chinese).
|
[30] |
XING Y F, GAO Y H, CHEN L, et al.Solution methods for two key problems in multiscale asymptotic expansion method[J]. Composite Structures, 2017, 160:854-866. doi: 10.1016/j.compstruct.2016.10.104
|
[1] | ZHANG Siyu, YU Fating, LU Jinshu, YU Li, JIA He, BAO Wenlong. Fluid-Structure Interaction Simulation of Parafoil During Flare Maneuver in Wind Environment[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2025.0002 |
[2] | ZHENG J,HE Z H,YU X C. One-stage object detection based on adjacent feature fusion and feature decoupling[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(4):1205-1214 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0249. |
[3] | LI W,CHENG X,LI Y J. Integrated security control of industrial cyber-physical systems based on new type ADETCS[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(9):2704-2716 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0734. |
[4] | DONG H F,SUN H Y,YAN L,et al. Digital twin construction of cleaning for navigational lamps with physical empowerment[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(3):785-795 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0357. |
[5] | MA J L,LIU Y H,MA Z P,et al. Lightweight lip reading method based on decoupling homogeneous self-knowledge distillation[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(12):3709-3719 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0931. |
[6] | WANG Dequan, ZHAO Yuxuan, YUAN Xiangyue, WANG Qingchun, CHEN Zhongjia. Design and simulation of large composite material curing furnace based on flow field uniformity[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0370 |
[7] | LU Ming-yu, ZHANG Ming, WEI Yu-xuan, LI Bo, CUI Zhi-gang, ZHANG Kai-hu. Characteristics and Homogenization Removal Methods of Ultraviolet Femtosecond Laser Processing of Aerospace AFRP Composite Materials[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0096 |
[8] | LI Xing, LOU Yang, DONG Jia-qi, XU Ji-feng, WU Hai-hong, SHI Wei-feng. Research on the application of composite structural battery in civil aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0701 |
[9] | LI Jun, LI Wenlong, GAO Tenglong, LI Yanan, LIU Jingli. Temperature correction method for load measurement of aircraft composite structures[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0853 |
[10] | MA M,YU J,FAN W R. CFRP material detection based on improved joint sparse EIT algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(2):265-272 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0244. |
[11] | LIU Wei-rong, WEI Zi-feng, JIN Zhen-bing, MENG Jia-hao, WANG Xing-kun, ZHANG Hao-chen. Iterative optimal impedance-based human-robot physical interaction control method[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0314 |
[12] | PAN J X,JING B,JIAO X X,et al. Degradation modeling of oxygen concentrator in multiple stress coupling[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(2):472-481 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0260. |
[13] | ZHANG H J,LI H Q,KANG H L,et al. High temperature thermal conductivity estimation method of inorganic-organic hybrid phenolic composites[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(1):92-99 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0170. |
[14] | ZHAO Z B,YANG Z W,LI Y,et al. Infrared radiation characteristics of carbon/glass hybrid composites under low-velocity impact[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(1):177-186 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0174. |
[15] | YANG Yuchen, ZHANG Zenghui, YAN Jianing, ZHANG Jing, YANG Lingyu. Dual-channel control of hypersonic flight vehicles based on bounded perturbation analysis of eigenvalues[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(10): 2020-2030. doi: 10.13700/j.bh.1001-5965.2021.0053 |
[16] | YIN Zengyuan, CAI Yuanwen, REN Yuan, WANG Weijie, CHEN Xiaocen, YU Chunmiao. Decoupled active disturbance rejection control method for magnetically suspended rotor based on state feedback[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(7): 1210-1221. doi: 10.13700/j.bh.1001-5965.2021.0021 |
[17] | SHAO Xin, JI Li, ZOU Huaiwu, XIE Yangmin. A parameter calibration method for manipulators based on laser displacement measurement[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(11): 2281-2288. doi: 10.13700/j.bh.1001-5965.2021.0093 |
[18] | ZHANG Chao, LIU Jianchun, FANG Xin. Damage analysis in composite laminates under low velocity oblique impact[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(12): 2388-2397. doi: 10.13700/j.bh.1001-5965.2021.0154 |
[19] | XIA Fei, XUE Jianghong, HE Zanhang, JIN Fusong. Interfacial crack growth of delaminated composite laminates under hygrothermal environment[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(12): 2460-2472. doi: 10.13700/j.bh.1001-5965.2021.0137 |
[20] | YANG Zhan-gang, KE Zhong-shu, YANG Xu-wei, BAO Xing-wang. Analysis of the influence of finishing process on the electrical properties of composite skin[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2022-0763 |
1. | 贾学增,王正,冉隆毅. 热力耦合模拟钛合金压力容器疲劳失效分析. 兵器材料科学与工程. 2020(04): 122-126 . ![]() |