Volume 47 Issue 12
Dec.  2021
Turn off MathJax
Article Contents
ZHU Linhao, ZOU Zehua, YIN Yin, et al. Intelligent design method of landing gear retraction and extension trajectory for narrow space[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(12): 2560-2570. doi: 10.13700/j.bh.1001-5965.2020.0440(in Chinese)
Citation: ZHU Linhao, ZOU Zehua, YIN Yin, et al. Intelligent design method of landing gear retraction and extension trajectory for narrow space[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(12): 2560-2570. doi: 10.13700/j.bh.1001-5965.2020.0440(in Chinese)

Intelligent design method of landing gear retraction and extension trajectory for narrow space

doi: 10.13700/j.bh.1001-5965.2020.0440
Funds:

National Natural Science Foundation of China 51805249

Natural Science Foundation of Jiangsu Province BK20180436

the Fundamental Research Funds for the Central Universities NF2018001

Priority Academic Program Development of Jiangsu Higher Education Institutions 

More Information
  • Corresponding author: YIN Yin, E-mail: yinyin@nuaa.edu.cn
  • Received Date: 20 Aug 2020
  • Accepted Date: 21 Dec 2020
  • Publish Date: 20 Dec 2021
  • The flattened aerodynamic shape is the preferred layout for hypersonic vehicles to obtain high lift drag ratio, but this shape seriously restricts the collection space of the landing gear, and the conventional mechanism is difficult to meet the requirements. Engineers can only use the three-dimensional motion of the complex mechanism to realize the narrow space retraction and retraction of the landing gear. However, the current mainstream iterative trial and error method of computer-aided design relies heavily on engineering experience in solving the design problems of spatial mechanisms, which is time-consuming and labor-consuming, and it is difficult to obtain the optimal results. To address this problem, an intelligent optimization algorithm based method for autonomous design of complex landing gear mechanisms is proposed in this paper. First, theoretical kinematics model of retraction mechanism is built after analysis. Then, the model of inter-structure distances between landing gears and fuselage is established for detecting collisions, and the optimal motion trajectory of landing gear mechanisms is designed autonomously by using the deep neural network based learning optimization algorithm. Finally, the proposed method is applied to a landing gear mechanism design of certain hypersonic aircraft with a narrow cabin. The results show that the optimal design scheme for retractable mechanism can be obtained quickly by the proposed method, which can be used to guide the design of landing gear retractable mechanism for hypersonic aircraft.

     

  • loading
  • [1]
    高泽迥, 黄振威. 飞机设计手册第14分册: 起飞着陆系统设计[M]. 北京: 航空工业出版社, 2002: 19-37.

    GAO Z J, HUANG Z W. Aircraft design manual 14th volume: Takeoff and landing system design[M]. Beijing: Aviation Industry Press, 2002: 19-37(in Chinese).
    [2]
    聂宏, 魏小辉. 飞机起落架动力学设计与分析[M]. 西安: 西北工业大学出版社, 2013: 1-18.

    NIE H, WEI X H. Dynamic design and analysis of aircraft landing gear[M]. Xi'an: Northwestern Polytechnical University Press, 2013: 1-18(in Chinese).
    [3]
    CHAI S T, MASON W H. Landing gear integration in aircraft conceptual design[C]//6th Symposium on Multidisciplinary Analysis and Optimization. Reston: AIAA, 1996: 525-540.
    [4]
    LIU H. Application of high-speed solenoid valve to the semi-active control of landing gear[J]. Chinese Journal of Aeronautics, 2008, 21(3): 232-240. doi: 10.1016/S1000-9361(08)60030-8
    [5]
    KHAPANE P D. Simulation of asymmetric landing and typical ground maneuvers for large transport aircraft[J]. Aerospace Science and Technology, 2003, 7(8): 611-619. doi: 10.1016/S1270-9638(03)00066-X
    [6]
    方洋旺, 柴栋, 毛东辉, 等. 吸气式高超声速飞行器制导与控制研究现状及发展趋势[J]. 航空学报, 2014, 35(7): 1776-1786. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201407003.htm

    FANG Y W, CHAI D, MAO D H, et al. Status and development trend of the guidance and control for air-breathing hypersonic vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(7): 1776-1786(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201407003.htm
    [7]
    VIOLA N, FUSARO R, VERCELLA V, et al. Technology roadmapping strategy, TRIS: Methodology and tool for technology roadmaps for hypersonic and re-entry space transportation systems[J]. Acta Astronautica, 2020, 170: 609-622. doi: 10.1016/j.actaastro.2020.01.037
    [8]
    张速成, 魏省三, 张鸣, 等. 起落架收放气动载荷研究[J]. 航空学报, 1987, 8(12): 572-577. doi: 10.3321/j.issn:1000-6893.1987.12.003

    ZHANG S C, WEI S S, ZHANG M, et al. Study of retracting or lowering aerodynamic loads on landing gear[J]. Acta Aeronautica et Astronautica Sinica, 1987, 8(12): 572-577(in Chinese). doi: 10.3321/j.issn:1000-6893.1987.12.003
    [9]
    凌晓琳, 张启先. 飞机起落架收放及转轮复杂空间机构的位置综合和碰撞检测[J]. 北京航空学院学报, 1982(2): 149-165. https://www.cnki.com.cn/Article/CJFDTOTAL-BJHK198202010.htm

    LING X L, ZHANG Q X. Kinematic synthesis and collision detection of a complex spatial mechanism of an airplane landing gear with rotable wheel orientation[J]. Journal of Beijing Institute of Aeronautics and astronautics, 1982 (2): 149-165(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-BJHK198202010.htm
    [10]
    杨国柱, 梁跃进. 起落架收放机构的交互式计算机辅助设计[J]. 航空学报, 1987, 8(12): 563-571. doi: 10.3321/j.issn:1000-6893.1987.12.002

    YANG G Z, LIANG Y J. Design analysis and interactive computer aided edsign of the retraction mechanism of main landing gear with rotatable wheel plane [J]. Acta Aeronautica et Astronautica Sinica, 1987, 8(12): 563-571(in Chinese). doi: 10.3321/j.issn:1000-6893.1987.12.002
    [11]
    周佳新. 起落架空间定位的图解法研究[J]. 辽宁师专学报(自然科学版), 2003, 5(4): 17-23. doi: 10.3969/j.issn.1008-5688.2003.04.010

    ZHOU J X. Graphic method for landing gear positioning [J]. Journal of Liaoning Teachers College (Natural Science Edition), 2003, 5(4): 17-23(in Chinese). doi: 10.3969/j.issn.1008-5688.2003.04.010
    [12]
    杨国柱. 现代高性能飞机可收放起落架主要参数的确定[J]. 航空学报, 1987, 8(10): 459-466. doi: 10.3321/j.issn:1000-6893.1987.10.002

    YANG G Z. Determination of main pameters of a retractable landing gear for modern high performance aircrafts [J]. Acta Aeronautica et Astronautica Sinica, 1987, 8(10): 459-466(in Chinese). doi: 10.3321/j.issn:1000-6893.1987.10.002
    [13]
    姜礼杰, 陈进, 王良诣, 等. 肢体协调运动康复机器人的机构设计与实验[J]. 自动化学报, 2016, 42(12): 1808-1818. https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO201612004.htm

    JIANG L J, CHEN J, WANG L Y, et al. Mechanism design and experiment of rehabilitation training robot for coordinated movement of upper and lower limbs[J]. Acta Automatica Sinica, 2016, 42(12): 1808-1818(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO201612004.htm
    [14]
    于俊虎. 带有转轮的空间转轴起落架理论图设计原理[J]. 航空学报, 1990, 11(6): 299-303. doi: 10.3321/j.issn:1000-6893.1990.06.014

    YU J H. Determination of geometrical parameters of the space pivot axis for a retractable landing gear with turnable wheel[J]. Acta Aeronautica et Astronautica Sinica, 1990, 11(6): 299-303(in Chinese). doi: 10.3321/j.issn:1000-6893.1990.06.014
    [15]
    张启先. 关于起落架收放中转轴及转动的确定[J]. 航空学报, 1984, 5(2): 157-162. doi: 10.3321/j.issn:1000-6893.1984.02.009

    ZHANG Q X. Determination of the axis and the angle of rotation for a retractable landing gear[J]. Acta Aeronautica et Astronautica Sinica, 1984, 5(2): 157-162(in Chinese). doi: 10.3321/j.issn:1000-6893.1984.02.009
    [16]
    张力, 阮江军, 黄道春, 等. 双盘式线圈结构快速斥力机构设计与运动特性仿真研究[J]. 电工技术学报, 2018, 33(2): 255-264. https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS201802005.htm

    ZHANG L, RUAN J J, HUANG D C, et al. Study on the design and movement characteristics simulation of a fast repulsion mechanism based on double-coil structure[J]. Transactions of China Electrotechnical Society, 2018, 33(2): 255-264(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS201802005.htm
    [17]
    YUE S, NIE H, ZHANG M, et al. Design and landing dynamic analysis of reusable landing leg for a near-space manned capsule[J]. Acta Astronautica, 2018, 147: 9-26. doi: 10.1016/j.actaastro.2018.02.043
    [18]
    ZHANG W, ZHANG Z, ZHU Q D, et al. Dynamics model of carrier-based aircraft landing gears landed on dynamic deck[J]. Chinese Journal of Aeronautics, 2009, 22(4): 371-379. doi: 10.1016/S1000-9361(08)60113-2
    [19]
    YIN Y, NIE H, NI H J, et al. Reliability analysis of landing gear retraction system influenced by multifactors[J]. Journal of Aircraft, 2016, 53(3): 713-724. doi: 10.2514/1.C033333
    [20]
    YIN Y, NIE H, WEI X H, et al. Fault analysis and solution of an airplane nose landing gear's emergency lowering[J]. Journal of Aircraft, 2016, 53(4): 1022-1032. doi: 10.2514/1.C032351
    [21]
    YIN Y, NEILD S A, JIANG J Z, et al. Optimization of a main landing gear locking mechanism using bifurcation analysis[J]. Journal of Aircraft, 2017, 54(6): 2126-2139. doi: 10.2514/1.C034228
    [22]
    印寅, 聂宏, 魏小辉, 等. 多因素影响下的起落架收放系统性能分析[J]. 北京航空航天大学学报, 2015, 41(5): 953-960. doi: 10.13700/j.bh.1001-5965.2014.0380

    YIN Y, NIE H, WEI X H, et al. Retraction system performance analysis of landing gear with the influence of multiple factors[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(5): 953-960(in Chinese). doi: 10.13700/j.bh.1001-5965.2014.0380
    [23]
    印寅, 聂宏, 魏小辉, 等. 飞机起落架收放系统动力学分析与试验[J]. 振动、测试与诊断, 2016, 36(4): 641-646. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCS201604005.htm

    YIN Y, NIE H, WEI X H, et al. Dynamics analysis and testing of an aircraft's landing gear retraction system[J]. Journal of Vibration, Measurement & Diagnosis, 2016, 36(4): 641-646(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCS201604005.htm
    [24]
    SUTTON R. Two problems with backpropagation and other steepest-descent learning procedures for networks[C]//Proceedings of the 8th Annual Conference of the Cognitive Science Society, 1986: 823-832.
    [25]
    NESTEROV Y. A method of solving a convex programming problem with convergence rate O(1/k2)[J]. Doklady Akademii Nauk SSSR, 1983, 269(3): 543-547. http://www.researchgate.net/publication/257291640_A_method_of_solving_a_convex_programming_problem_with_convergence_rate_O1k2
    [26]
    DEAN J, CORRADO G, MONGA R, et al. Large scale distributed deep networks[C]//NIPS'12: Proceedings of the 25th International Conference on Neural Information Processing Systems, 2012, 1: 1223-1231.
    [27]
    DUCHI J, HAZAN E, SINGER Y. Adaptive subgradient methods for online learning and stochastic optimization[J]. Journal of Machine Learning Research, 2011, 12: 2121-2159. http://www.osti.gov/cgi-bin/eprints/redirectEprintsUrl?http%3A%2F%2Fwww.magicbroom.info%2FPapers%2FDuchiHaSi10.pdf
    [28]
    IOFFE S, SZEGEDY C. Batch normalization: Accelerating deep network training by reducing internal covariate shift[C]//Proceedings of the 32nd International Conference on International Conference on Machine Learning, 2015, 37: 448-456.
    [29]
    KINGMA D P, BA J. Adam: A method for stochastic optimization[C]//Proceedings of the 3rd International Conference on Learning Representations, 2015: 1-15.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(17)  / Tables(2)

    Article Metrics

    Article views(499) PDF downloads(26) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return