Kang Honglin, Yan Chao, Li Tinghe, et al. Numerical study of aeroheating predictions for hypersonic reentry bodies[J]. Journal of Beijing University of Aeronautics and Astronautics, 2006, 32(12): 1395-1398. (in Chinese)
Citation: Liu Huicong, Zhu Liqun, Du Yanbinet al. Research of accelerated corrosion test method of zinc, cadmium plating on high-strength steel[J]. Journal of Beijing University of Aeronautics and Astronautics, 2004, 30(12): 1216-1220. (in Chinese)

Research of accelerated corrosion test method of zinc, cadmium plating on high-strength steel

  • Received Date: 14 Oct 2003
  • Publish Date: 31 Dec 2004
  • Using three accelerated corrosion tests in the lab, the relativity of accelerated corrosion in the lab and Xiamen marine atmosphere corrosion was studied to the zinc and cadmium plating coatings on the high-strength steel. The three methods selected are the accelerated salt spray test, orthogonal dipping test and resultant seawater dipping test. A linear regression equation is obtained with a correlative coefficient equal to 0.995 2(remarkably correlative) for the zinc plating. The results show that, the accelerating effect is remarkable for the zinc and cadmium plating coatings in the accelerated salt spray test as well as for the cadmium plating in the orthogonal dipping test of the solution without S2-. And the accelerating action of the resultant seawater dipping test is effective to the cadmium plating.

     

  • [1] 屈 庆,严川伟,张 蕾.Zn初期大气腐蚀中NaCl和SO2的协同效应[J].中国有色金属学报,2002,12(6):1272~1276 Qu Qing, Yan Chuanwei, Zhang Lei. The cooperated effect of NaCl and SO2 for zinc initial corrosion in the atmosphere[J]. Journal of Chinese Colored Metal, 2002, 12(6):1272~1276( in Chinese) [2] Henriksen J F, Mikhailov A A. Atmospheric corrosion tests of metals in SO2-polluted cold atmosphere in northern norway and along its border with Russia[J]. Protection of Metals, 2002, 38(6):579~589 [3] Panchenko Y M, Strekalov P V. Comparative assessment of zinc and cadmium electroplates by the weight of retained corrosion products and the total weight[J]. Protection of Metals, 2001, 37(4):367~384 [4] 李家柱,马颐军.锌镀层与镉镀层抗大气腐蚀性能的比较[J].材料工程,1998,(5):28~30,33 Li Jiazhu, Ma Yijun. The comparison of anti-corrosion ability in the atmosphere for zinc and cadmium plating[J]. Materials Engineering, 1998,(5):28~30, 33(in Chinese) [5] Zhirnov A D, Karimova S A, Ovsyannikova L V, et al. New protective coatings for replacing cadmium coatings on steel parts[J]. Metal Science and Heat Treatment, 2003, 45(1/2):23~25 [6] 王振尧, 于国才, 韩 薇. 我国若干典型大气环境中的锌腐蚀[J]. 腐蚀科学与防护技术,2003,15(4):191~195 Wang Zhenyao, Yu Guocai, Han Wei. The zinc corrosion in some typical atmosphere in China[J]. Corrosion Science and Protection Technique, 2003, 15(4):191~195(in Chinese) [7] Gino Palumbo. The importance of subtle materials and chemical considerations in the development of accelerated tests for service performance prediction[S]. ASTM STP 1194, 1994.252~267 [8] 孙志华,李金桂,李牧铮.金属材料大气腐蚀加速试验研究的发展趋势[J].材料工程,1995,(12):41~43 Sun Zhihua, Li Jingui, Li Muzheng. The development trend of accelerated corrosion test studying for metal corrosion in atmosphere[J]. Materials Engineering, 1995,(12):41~43(in Chinese) [9] 刘慧丛,朱立群,杜岩滨.几种镀层海洋大气暴露与实验室盐雾试验条件下的耐腐蚀性研究[J].南昌航空工业学院学报(自然科学版),2002,(10):110~113 Liu Huicong, Zhu Liqun, Du Yanbin. The study of anti-corrosion ability of some plating coatings in marine atmosphere and salt spray corrosion test in the lab[J]. Journal of Nanchang Aerial Industrial Institute(Natural Science Edition), 2002,(10):110~113(in Chinese) [10] GB/T 10125—1997,人造气氛腐蚀试验——盐雾试验[S]B/T 10125—1997, Artificial ambience corrosion test——salt spray test[S]in Chinese) [11] HB/Z 5068—92,电镀锌、镉工艺[S]B/Z 5068—92, The technics of electroplating zinc, cadmium[S](in Chinese) [12] 章葆澄. 电镀工艺学[M]. 北京:北京航空航天大学出版社,1993.57,77 Zhang Baocheng. Electroplating technics[M]. Beijing:Beijng University of Aeronautics and Astronautics Press, 1993.57,77(in Chinese)
  • Relative Articles

    [1]FU Yangaoxiao, MEI Jie, DING Mingsong, CHEN Jianqiang, JIANG Tao, DONG Weizhong. Numerical simulation of jet interaction heating on reusable launch vehicle[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2025.0053
    [2]ZHANG Yu, WANG Fengming, WANG Yanhong, MU Lin, DONG Ming. Simulation of combustion characteristics and prediction of combustion performance using machine learning in an integrated afterburner[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0213
    [3]SU Jinxin, XI Ziyan, DAI Yuting. Nonlinear fluid-structure interaction response analysis of a large flexible wing under strong gusts[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0278
    [4]BAI Jianfeng, MENG Junhui, ZHANG Lili, WEI Shechun, MA Nuo. Dynamic performances research of the wing deployment considering fluid structure interaction[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0645
    [5]ZOU L,WU W N,LIU J,et al. Numerical simulation of flow around two tandem wavy conical cylinders at subcritical Reynolds number[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(3):706-715 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0285.
    [6]LI M J,GUO Z H. Combustion instability analysis of pilot flame in model combustor[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(3):951-961 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0274.
    [7]HE Yan-tong, DENG Tian. Numerical Study of low-pressure modeling of bio-jet fuel combustion[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0826
    [8]LI C Q,ZHAN Y Q,WANG Z M,et al. Numerical simulation of iliac vein compression syndrome in hemodynamics[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2646-2654 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0693.
    [9]LEI J M,WU Z X,XIE W Y. Numerical simulation investigation on water surface skipping motion characteristics of sea-skimming projectile[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(10):2975-2983 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0813.
    [10]CHEN B,LUO L,JIANG A L,et al. Numerical simulation of separation characteristics for internally buried weapon at high Mach number[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(7):2113-2122 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0627.
    [11]ZHANG Pei-hong, JIA Hong-yin, ZHAO Jiao, WU Xiao-jun, ZHOU Gui-yu, ZHANG Yao-bing. Numerical simulation research on opposing jet interaction characteristics of rocket inverse flight[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0710
    [12]ZHANG P H,CHEN H Y,ZHANG J,et al. Passive flow control for weapon bay at high Mach number[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(11):2913-2920 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0790.
    [13]XIE N,TANG Y M,ZHANG Y,et al. Numerical study of blood pump weaning effects on hemocompatibility of centrifugal blood pump[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1680-1688 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0494.
    [14]ZHANG P H,TANG Y,TANG J,et al. Simulation of cavity flow at high Mach number based on adaptive unstructured hybrid mesh[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(6):1311-1318 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0424.
    [15]HAN Y F,HU X S,GAO Y,et al. Comparison of turbulence models for unsteady flow simulation in a long and narrow cabin[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(4):957-964 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0335.
    [16]PENG L,LI L,ZHAO W. Numerical study on coupled heat transfer of rotating disc in centrifugal atomization[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(12):3456-3466 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0152.
    [17]GUO Qi, SHEN Xiaobin, LIN Guiping, ZHANG Shijuan. Numerical simulation of icing on aircraft rotating surfaces[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(11): 2259-2269. doi: 10.13700/j.bh.1001-5965.2021.0081
    [18]LI Yongchang, DAI Yuting, YANG Chao. Fluid and structure coupling analysis of split drag rudder[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(12): 2494-2501. doi: 10.13700/j.bh.1001-5965.2021.0151
    [19]WANG Tao, ZHANG Wanxin, LI Meng, BU Xueqin, ZHANG Chen, WANG Hailiang. Performance analysis of skin temperature prediction model combining Smith's thermoregulation model with Tanabe model[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(12): 2482-2493. doi: 10.13700/j.bh.1001-5965.2021.0143
    [20]WENG Huiyan, CAI Guobiao, ZHENG Hongru, LIU Lihui, ZHANG Baiyi, HE Bijiao. Numerical simulation of effect of background pressure on electric propulsion plume field[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(10): 1854-1862. doi: 10.13700/j.bh.1001-5965.2021.0039
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views(3284) PDF downloads(877) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return