Liu Shengping, Wu Licheng, Lu Zhenet al. Trajectory tracking control of three-DOF planar under-actuated manipulator[J]. Journal of Beijing University of Aeronautics and Astronautics, 2007, 33(03): 307-310. (in Chinese)
Citation: Zhang Zenghui, Yang Lingyu, Zhang Jing, et al. Robust LPV control design using the gap metric[J]. Journal of Beijing University of Aeronautics and Astronautics, 2012, (11): 1430-1434,1439. (in Chinese)

Robust LPV control design using the gap metric

  • Received Date: 23 Jul 2011
  • Publish Date: 30 Nov 2012
  • A new robust linear parameter-varying (LPV) controller design method based on gap-metric was presented for the wide flight envelope and strong model parameters uncertainties of hypersonic vehicle. A new convex decomposition strategy with the optimal gap-metric was proposed. In order to reduce the conservativeness of the controller, self-scheduled LPV control was implemented using the new strategy. Vertex models of the polytopic LPV system were solved considering the model parameters uncertainties to improve the robustness of the controller nearby the vertex boundary. The new design approach was applied to the hypersonic vehicle. Simulation results show that this new method can reduce the conservativeness of traditional LPV controllers. The command tracking and robustness of the LPV control system are in satisfactory performances. The robust performance and stability of the system under strong parameters uncertainties are also guaranteed.

     

  • [1]
    Shamma J M,Michael A.Gain scheduling:potential hazards and possible remedies[J].IEEE Control Systems,1992:101-107
    [2]
    Lu Bei,Wu Fen.Switching LPV control designs using multiple parameter-dependent Lyapunov functions[J].Automatica,2004,40(11):1973-1980
    [3]
    Nicolas F.Robust LPV control design for a RLV during reentry[R].AIAA-2010-8194,2010
    [4]
    Apkarian P,Gahinet P,Becker G.Self-scheduled H control of linear parameter-varying systems:a design example[J].Automatica,1995,31(9):1251-1262
    [5]
    Li Wenqiang,Zheng Zhiqiang.Robust gain-scheduling controller to LPV system using gap metric[C]//Proceedings of the 2008 IEEE International Conference on Information and Automation.Piscataway,NT:IEEE Inc,2008:514-518
    [6]
    Ahmed K E.The gap metric:robustness of stabilization of feedback systems[J].IEEE Transactions on Automatic Control,1985,AC-30(3):240-247
    [7]
    Arthur M J K.Performance and the gap metric[C]//Proceedings of the 33rd Conference on Decision and Control.Piscataway,NT:IEEE Inc,1994:2656-2658
    [8]
    Gahinet P,Nemirovski A,Laub A J,et al.LMI control tool box [M].Massachusetts:The MathWorks Inc,1995:7.2-7.15
    [9]
    John D S,Zane P,John D M.Hypersonic vehicle simulation model:winged-cone configuration [R].NASA TM-102610,1990
    [10]
    Zhang Zenghui,Yang Lingyu,Shen Gongzhang,et al.Modeling and analysis for generic hypersonic vehicle[C]//IEEE 2010 8th World Congress on Intelligent Control and Automation.Piscataway,NT:IEEE Inc,2010:152-158
    [11]
    Mehendale C S,Grigoriadis K M.Performance of LPV gain-scheduled systems[C]//Proceedings of the 2006 American Control Conference.Piscataway,NT:IEEE Inc,2006:14-16
  • Relative Articles

    [1]DENG C J,CHEN Q J,ZHANG T S,et al. NHC lever arm estimation algorithm for vehicle-integrated navigation systems based on dead reckoning[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(2):668-675 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0035.
    [2]WANG Boqiao, ZHANG Xianghua, CHEN Zheng, ZHANG Ze. Modelling Method for Non-Singular Dynamics of Air-To-Air Missiles and Trajectory Optimization[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0760
    [3]DOU L,LI X K,ZHANG H L,et al. Fixed time trajectory tracking control of forward-tilting morphing aerospace vehicle[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(3):1005-1017 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0152.
    [4]LI T,ZHAO Y Q,XU T,et al. Stability control of vehicles powered by non-pneumatic wheels based on robust optimal sliding mode[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(4):1342-1351 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0238.
    [5]LEI Bang-jun, DING Qi-shuai, MOU Qian-xi, WU Zheng-ping. Visual tracking algorithm based on template updating and dual feature enhancement[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0020
    [6]LUO Y L,LIAO Y R,LI Z M,et al. Strong tracking CKF adaptive interactive multiple model tracking algorithm based on hypersonic target[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(7):2272-2283 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0587.
    [7]ZHANG X,LU X W,LAI L J. Large-stroke microposition stage driven by reluctance actuator and its trajectory tracking control[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(9):2852-2861 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0702.
    [8]DONG J C,GAO Q H,LIU Z H. Planar motion control of distributed-driven vehicles considering dynamic hysteresis[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(12):3842-3853 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0887.
    [9]WAN B,SU X C,WANG J,et al. A precise landing control method based on model predictive control algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(4):1197-1207 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0383.
    [10]WANG Y X,LI X,CAI Z H,et al. Integrated control method for quadrotors’ aggressive trajectory tracking under multiple constraints[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):48-60 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0208.
    [11]ZHANG B H,CHAI D D,MENG L B,et al. Anti-occlusion target tracking algorithm of UAV based on multiple detection[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(9):2442-2454 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0693.
    [12]JIN G D,XUE Y L,TAN L N,et al. Aerial object tracking algorithm for UAVs based on dual-attention shuffling[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(1):53-65 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0177.
    [13]GUO Q,WU T H,XU W,et al. Target tracking algorithm based on saliency awareness and consistency constraint[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(9):2244-2257 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0688.
    [14]REN Xuan-ming, TANG Xin-min, LIU Yu-sheng, LU Qi-xing. Target trajectory tracking and extrapolation based on the INT-VSMM algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0724
    [15]MA Su-gang, DUAN Shuai-peng, HOU Zhi-qiang, YU Wang-sheng, PU Lei, YANG Xiao-bao. Multi-object tracking algorithm based on dual-branch feature enhancement and multi-level trajectory association[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0472
    [16]TANG Z Y,MA F Y,PEI Z C. Improved PSO-RBF neural network adaptive sliding mode control for quadrotor systems[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1563-1572 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0477.
    [17]WU Sunyong, ZHOU Yusong, XIE Yun, CAI Ruhua, FAN Xiangting. Extended target tracking algorithm based on MM-GGIW-PMBM filter[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(12): 2356-2364. doi: 10.13700/j.bh.1001-5965.2021.0162
    [18]SHAO Xin, JI Li, ZOU Huaiwu, XIE Yangmin. A parameter calibration method for manipulators based on laser displacement measurement[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(11): 2281-2288. doi: 10.13700/j.bh.1001-5965.2021.0093
    [19]DU Xianchen, LIU Xue'ao, DONG Yang, WANG Hui, HE Tianyu, WANG Chunjie. Design and dimensional synthesis of a variable wing sweep mechanism[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(12): 2502-2509. doi: 10.13700/j.bh.1001-5965.2021.0125
    [20]WANG Yingxun, SONG Xinyu, ZHAO Jiang, CAI Zhihao. Anti-disturbance trajectory tracking control method for aggressive quadrotors[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(9): 1806-1817. doi: 10.13700/j.bh.1001-5965.2022.0216
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-042025-050510152025
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 8.6 %FULLTEXT: 8.6 %META: 88.8 %META: 88.8 %PDF: 2.6 %PDF: 2.6 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 5.6 %其他: 5.6 %Central District: 0.2 %Central District: 0.2 %China: 0.4 %China: 0.4 %Rochester: 0.2 %Rochester: 0.2 %上海: 0.4 %上海: 0.4 %东莞: 0.2 %东莞: 0.2 %佛山: 0.2 %佛山: 0.2 %北京: 4.6 %北京: 4.6 %哥伦布: 0.4 %哥伦布: 0.4 %天津: 0.4 %天津: 0.4 %宜昌: 0.2 %宜昌: 0.2 %宝鸡: 0.4 %宝鸡: 0.4 %宣城: 0.8 %宣城: 0.8 %广州: 0.4 %广州: 0.4 %张家口: 1.2 %张家口: 1.2 %昆明: 0.4 %昆明: 0.4 %杭州: 0.4 %杭州: 0.4 %洛杉矶: 0.2 %洛杉矶: 0.2 %深圳: 8.6 %深圳: 8.6 %漯河: 0.8 %漯河: 0.8 %芒廷维尤: 21.9 %芒廷维尤: 21.9 %芝加哥: 1.0 %芝加哥: 1.0 %葵涌: 1.2 %葵涌: 1.2 %西宁: 46.6 %西宁: 46.6 %西安: 0.2 %西安: 0.2 %迪亚巴克尔: 0.2 %迪亚巴克尔: 0.2 %郑州: 1.6 %郑州: 1.6 %重庆: 0.6 %重庆: 0.6 %长沙: 0.4 %长沙: 0.4 %青岛: 0.4 %青岛: 0.4 %其他Central DistrictChinaRochester上海东莞佛山北京哥伦布天津宜昌宝鸡宣城广州张家口昆明杭州洛杉矶深圳漯河芒廷维尤芝加哥葵涌西宁西安迪亚巴克尔郑州重庆长沙青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views(2023) PDF downloads(658) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return