Citation: | Zhou Yu, Yan Chao. Entropy correction analyses for Roe scheme[J]. Journal of Beijing University of Aeronautics and Astronautics, 2009, 35(3): 356-360. (in Chinese) |
[1] Roe P L. Approximate Riemann solvers parameter vectors and difference schemes[J]. Journal of Computational Physics, 1981,43(2):357-372 [2] 阎超. 计算流体力学方法及应用[M].北京: 北京航空航天大学出版社, 2006: 64-66 Yan Chao. Computational fluid dynamics method and application[M]. Beijing: Beijing University of Aeronautics and Astronautics Press, 2006:64-66 (in Chinese) [3] Muller B. Simple improvements if an upwind TVD scheme for hypersonic flow . AIAA-89-1977, 1989 [4] Yee H C. Upwind and symmetric shock-capturing schemes . NASA-TM-89464, 1987 [5] Harten A , Hyman J M. Self-adjusting grid methods for one-dimensional hyperbolic conservation laws [J]. Journal of Computational Physics, 1983, 50(2):235-269 [6] Kermani M J, Pleet E G. Modified entropy correction formula for the roe scheme . AIAA-2001-0083, 2001 [7] Sanders R, Morano E, Druguet M C. Multidimensional dissipation for upwind schemes: stability and applications to gas dynamics [J]. Journal of Computational Physics, 1998, 145(2):511-537 [8] Woodward P, Colella P. The numerical simulation of two dimensional fluid flow with strong shocks [J]. Journal of Computational Physics, 1984, 54(1): 115-173 [9] Anderson D J. Computational fluid dynamics: the basis with applications [M]. New York: McGraw-Hill, 1995:502-504 [10] Maurizio P, Domenic D. Numerical instabilities in upwind methods: analysis and cures for the "carbuncle" phenomenon[J]. Journal of Computational Physics, 2001, 166(2):271-301 [11] 谢锦睿,吴颂平.TVD格式与高超音速气动加热数值模拟[J].北京航空航天大学学报, 2007, 33(4):392-396 Xie Jinrui,Wu Songping. TVD scheme and numerical simulation of aerodynamic heating in hypersonic flows[J]. Journal of Beijing University of Aeronautics and Astronautics, 2007, 33(4):392-396 (in Chinese)
|