Kang Honglin, Yan Chao, Li Tinghe, et al. Numerical study of aeroheating predictions for hypersonic reentry bodies[J]. Journal of Beijing University of Aeronautics and Astronautics, 2006, 32(12): 1395-1398. (in Chinese)
Citation: Tian Ting, Yan Chao. Numerical simulation on opposing jet in hypersonic flow[J]. Journal of Beijing University of Aeronautics and Astronautics, 2008, 34(01): 9-12. (in Chinese)

Numerical simulation on opposing jet in hypersonic flow

  • Received Date: 27 Dec 2006
  • Publish Date: 31 Jan 2008
  • The detailed influences of the free mach number, jet mach number, attack angle on the drag coefficient reduction were studied by high precise simulation of N-S(Navier-Stockes) equations. The Numerical results show good agreement with the experiments. It is indicated that the opposing jet is effective in reducing the aerodynamic heating and drag coefficient. Conclusions were got that the opposing jet enlarges the factors of affections by influencing the strength and the positions of the barrel shock, the mach disk and the recirculation region. It is believed that the drag coefficient turns out to be very sensitive to the flow field-s structure which is highly depended on the free mach number, jet mach number and attack angle due to the opposing jet.

     

  • [1] Hayashi K, Aso S, Tani Y. Numerical study of thermal protection system by opposing jet . AIAA 2005-188, 2005 [2] Hayashi K, Aso S. Effect of pressure ratio on aerodynamic heating reduction due to opposing jet . AIAA 2003-4041, 2003 [3] Wada Y, Liou M S. A flux splitting scheme with high-resolution and robustness for discontinuities . AIAA 94-0083, 1994 [4] Finley P J. The flow of a jet from a body opposing a supersonic free stream[J]. Journal of Fluid Mechanics, 1966, 26:265-272 [5] Fujita M.Axisymmetric oscillations of an opposing jet from a hemispherical nose . AIAA 1995-33(10), 1955 [6] Aso S, Hayashi K, Mizoguchi M. A study on aerodynamic heating reduction due to opposing jet in hypersonic flow . AIAA 2002-0646, 2002 [7] 刘君,张涵信,高树椿.超声速主流中逆向喷流流场的数值模拟[J].空气动力学报,1994,12(4):383-390 Liu Jun, Zhang Hanxin, Gao Shuchun. Numerical simulation for the flow of a jet from a body opposing a supersonic free stream[J].ACTA Aerodynamic Sinica, 1994, 12(4):383-390(in Chinese) [8] 耿湘人,桂业伟,王安龄.利用二维平面和轴对称逆向喷流减阻和降低热流的计算研究[J].空气动力学学报,2006,24(1): 85-89 Geng Xiangren, Gui Yewei, Wang Anling. Numerical investigation on drag and heat-transfer reduction using 2-D planar and axisymmetrical for ward facing jet[J]. ACTA Aerodynamic Sinica, 2006, 24(1):85-89(in Chinese) [9] 周伟江,马汉东.反向喷流与主流干扰数值模拟[J].空气动力学学报,1994,12(3):295-300 Zhou Weijiang, Ma Handong. Numerical simulation of the interaction between a supersonic stream and a countering nose jet[J]. ACTA Aerodynamic Sinica, 1994, 12(3):295-300(in Chinese) [10] 李君哲,阎超.气动热 CFD计算的格式效应研究[J].北京航空航天大学学报,2003,29(11):1022-1025 Li Junzhe, Yan Chao. Research on scheme effect and mesh effect of computation fluid dynamic in aerothermal[J]. Journal of Beijing University of Aeronautics and Astronautics, 2003, 29(11):1022-1025(in Chinese) [11] 阎超,李君哲.热流CFD计算中格式和网格效应若干问题研究[J].空气动力学报,2006,24(1):125-130 Yan Chao, Li Junzhe. A new method to determine the first mesh-s height of computational fluid dynamic in aerothermal[J]. ACTA Aerodynamic Sinica, 2006, 24(1):125-130(in Chinese)
  • Relative Articles

    [1]FU Yangaoxiao, MEI Jie, DING Mingsong, CHEN Jianqiang, JIANG Tao, DONG Weizhong. Numerical simulation of jet interaction heating on reusable launch vehicle[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2025.0053
    [2]ZHANG Yu, WANG Fengming, WANG Yanhong, MU Lin, DONG Ming. Simulation of combustion characteristics and prediction of combustion performance using machine learning in an integrated afterburner[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0213
    [3]SU Jinxin, XI Ziyan, DAI Yuting. Nonlinear fluid-structure interaction response analysis of a large flexible wing under strong gusts[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0278
    [4]BAI Jianfeng, MENG Junhui, ZHANG Lili, WEI Shechun, MA Nuo. Dynamic performances research of the wing deployment considering fluid structure interaction[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0645
    [5]ZOU L,WU W N,LIU J,et al. Numerical simulation of flow around two tandem wavy conical cylinders at subcritical Reynolds number[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(3):706-715 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0285.
    [6]LI M J,GUO Z H. Combustion instability analysis of pilot flame in model combustor[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(3):951-961 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0274.
    [7]HE Yan-tong, DENG Tian. Numerical Study of low-pressure modeling of bio-jet fuel combustion[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0826
    [8]LI C Q,ZHAN Y Q,WANG Z M,et al. Numerical simulation of iliac vein compression syndrome in hemodynamics[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2646-2654 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0693.
    [9]LEI J M,WU Z X,XIE W Y. Numerical simulation investigation on water surface skipping motion characteristics of sea-skimming projectile[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(10):2975-2983 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0813.
    [10]CHEN B,LUO L,JIANG A L,et al. Numerical simulation of separation characteristics for internally buried weapon at high Mach number[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(7):2113-2122 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0627.
    [11]ZHANG Pei-hong, JIA Hong-yin, ZHAO Jiao, WU Xiao-jun, ZHOU Gui-yu, ZHANG Yao-bing. Numerical simulation research on opposing jet interaction characteristics of rocket inverse flight[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0710
    [12]ZHANG P H,CHEN H Y,ZHANG J,et al. Passive flow control for weapon bay at high Mach number[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(11):2913-2920 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0790.
    [13]XIE N,TANG Y M,ZHANG Y,et al. Numerical study of blood pump weaning effects on hemocompatibility of centrifugal blood pump[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1680-1688 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0494.
    [14]ZHANG P H,TANG Y,TANG J,et al. Simulation of cavity flow at high Mach number based on adaptive unstructured hybrid mesh[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(6):1311-1318 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0424.
    [15]HAN Y F,HU X S,GAO Y,et al. Comparison of turbulence models for unsteady flow simulation in a long and narrow cabin[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(4):957-964 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0335.
    [16]PENG L,LI L,ZHAO W. Numerical study on coupled heat transfer of rotating disc in centrifugal atomization[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(12):3456-3466 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0152.
    [17]GUO Qi, SHEN Xiaobin, LIN Guiping, ZHANG Shijuan. Numerical simulation of icing on aircraft rotating surfaces[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(11): 2259-2269. doi: 10.13700/j.bh.1001-5965.2021.0081
    [18]LI Yongchang, DAI Yuting, YANG Chao. Fluid and structure coupling analysis of split drag rudder[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(12): 2494-2501. doi: 10.13700/j.bh.1001-5965.2021.0151
    [19]WANG Tao, ZHANG Wanxin, LI Meng, BU Xueqin, ZHANG Chen, WANG Hailiang. Performance analysis of skin temperature prediction model combining Smith's thermoregulation model with Tanabe model[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(12): 2482-2493. doi: 10.13700/j.bh.1001-5965.2021.0143
    [20]WENG Huiyan, CAI Guobiao, ZHENG Hongru, LIU Lihui, ZHANG Baiyi, HE Bijiao. Numerical simulation of effect of background pressure on electric propulsion plume field[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(10): 1854-1862. doi: 10.13700/j.bh.1001-5965.2021.0039
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views(3253) PDF downloads(1164) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return